
The HITCHHIKER’s Guide to High-Assurance
System Observability Protection with Efficient

Permission Switches

Chuqi Zhang, Jun Zeng, Yiming Zhang,

Adil Ahmad, Fengwei Zhang, Hai Jin, and Zhenkai Liang

ACM CCS, October 2024

Salt Lake City, U.S.A.

Observability captures a system’s historical states

Enterprise host machineRemote users

commit=0, modified=0,
pid=1381, just started

Application file logs

IP:10.16.12.130:80,
HTTP GET /shared/secret.txt

Network events

PID=12566,
syscall=write(/etc/passwd, …)

Operating system events

Logs:
for system diagnosis and

forensics analysis!

Logs are vulnerable when the OS is compromised

Enterprise host machineAdversary

OS (initially benign)

Logs are vulnerable when the OS is compromised

Enterprise host machine

OS (compromised)

Adversary

Logs are vulnerable when the OS is compromised

Enterprise host machineAdversary

Adversaries can tamper with
logs anywhere in the system.

OS (compromised)

VM / Secure world

Trusted OS

Prior work:
 in-memory protection with eventual persistence

OS

Hypervisor / TrustZone [OmniLog; Security’23]

Protected
storage

Trusted (log daemon)

VM / Secure world

Prior work:
 in-memory protection with eventual persistence

OS

Protected
storage

Trusted (log daemon)

Log

Trusted OS

Sync. mem copy
Hypervisor / TrustZone [OmniLog; Security’23]

Block
system

Problem 1:
 Low-assurance off-the-shelf environment

VM / Secure world

Trusted (log daemon)

Trusted OS

Hypervisor / TrustZone [OmniLog; Security’23]

Problem 1:
 Low-assurance off-the-shelf environment

VM / Secure world

Trusted (log daemon)

Trusted OS

Hypervisor / TrustZone [OmniLog; Security’23]

• Large trusted computing base (TCB).

• Non-negligible attack surfaces.

Problem 2:
 High synchronous protection overhead

Protected
storage

Trusted (log daemon)

Log

Sync. mem copy

Problem 2:
 High synchronous protection overhead

Protected
storage

Trusted (log daemon)

Log

0%

15%

30%

45%

60%

75%

Nginx Redis MySQL

Non-trivial overhead when log throughput is high.

0%

2%

4%

6%

8%

10%

7zip OpenSSL Octave

Sync. mem copy

Research questions we ask

Enterprise host machine

Enterprise host machine

Research questions we ask

1. Maintain a high-assurance
end-to-end secure environment?

2. Achieve high efficiency while
keeping protection effectiveness?

Requirements for high-assurance secure environment

1b. Protected
device

OS

1a. Security monitor

Include only the codebase of
necessary primitives for log isolation.

Principled approach to redesigning software components.

Debloat the required software
interface (driver) for I/O.

1c.
Log daemon

Securely delegate log management
to a native process.

1a. Codebase with only required isolation primitives

OS

Log integrity:
an isolated memory region.

OS

1a. Codebase with only required isolation primitives

Log availability:
an isolated peripheral device.

OS

1a. Codebase with only required isolation primitives

1a. Codebase with only required isolation primitives

OS

Security monitor

Memory isolation:

Stage-2 Page Table (S2PT) /
Granule Protection Table (GPT)

Device isolation:

System Memory
Management Unit (SMMU)

1a. Codebase with only required isolation primitives

Security monitor

OS

Isolated!

Protected
device

Memory isolation:

Stage-2 Page Table (S2PT) /
Granule Protection Table (GPT)

Device isolation:

System Memory
Management Unit (SMMU)

1b. Debloat software driver interface by record-replay

Security monitor

19

OS

Driver?
Protected

storage

1b. Debloat software driver interface by record-replay

Security monitor

20

OS

Driver?
Protected

storage

Software debloating, instead of
porting full-fledged software.

1b. Debloat software driver interface by record-replay

21

OS

Driver?

Normal
driver

Sample I/O tasks:
record driver-device

Interactions.

Task I/O

1b. Debloat software driver interface by record-replay

22

OS

Driver?

Normal
driver

Template
<MMIO>, <DMA>

<#IRQ>

1b. Debloat software driver interface by record-replay

23

OS

Driver?

Normal
driver

Template
<MMIO>, <DMA>

<#IRQ>

Debloated
driver

1b. Debloat software driver interface by record-replay

24

OS

Driver?

Normal
driver

Debloated
driver

Runtime replay

1c. Protect userspace daemon under native OS

Log daemon
OS

User-space

Security monitor

Isolated CPU
states

Isolate the daemon’s memory
and CPU states by primitives.

1c. Protect userspace daemon under native OS

Log daemon
OS

Daemon-required
runtime services

OS-delegated services

Reuse native-OS services, instead
of putting a trusted OS into TCB.

User-space

1c. Protect userspace daemon under native OS

OS
Log daemonProcess task scheduling

OS-delegated services

Security monitor

CPU state
save/restore

Network
#IRQ

handle

User-space

1c. Protect userspace daemon under native OS

OS

Network
#IRQ

handle

Process task scheduling

OS-delegated services

Security monitor

CPU state
save/restore

Log daemon

User-space

Protected
device

OS

Security monitor

Requirements for efficient and effective log protection

We don’t use synchronous
protection due to its overhead.

Requirements for efficient and effective log protection

For security, log protection can not be unbounded asynchronous.

Timeline: 𝑇𝑠

(Will take an unbounded delay ∆𝐭 for async. protection)

Logs

delay ∆𝐭

Protected!

Requirements for efficient and effective log protection

For security, log protection can not be unbounded asynchronous.

Timeline: 𝑇𝑠

Logs

𝑇𝑐delay ∆𝐭

Time for the attacker
to compromise the OS

Protected!

Requirements for efficient and effective log protection

For security, log protection can not be unbounded asynchronous.

Timeline: 𝑇𝑠

Logs

𝑇𝑐delay ∆𝐭

Time for the attacker
to compromise the OS

If the attacker can extend ∆𝐭, they can remove all
logs (e.g., inject many logs or interrupts.)

Remove logs

Protected
device

Requirements for efficient and effective log protection

OS

Security monitor

2a. Same protection delay
for all diverse logs

2b. Controlled short protection
delay with high efficiency

2a. Unified log collection using eBPF

OS

Application
file logs

Network event
logs

OS event
logs

2a. Unified log collection using eBPF

OS

Application
file logs

Network event
logs

OS event
logs

kernel bufs

Logs are efficiently collected:
• Centric memory region
• Pool of per-core buffers

2b. Bounded hardware timer and fast permission switch

Log daemonOS

Log bufs

Unified logs to be protected with controlled delay.

Log daemonOS

Log bufs

• Periodically triggers protections (timer interrupts).
• Prioritized and isolated timer interrupts.

2b. Bounded hardware timer and fast permission switch

Timer

Generated logs
Timer
triggerControlled delay

𝑇𝑝

Protected
Protect

2b. Bounded hardware timer and fast permission switch

Protected
Protect

Fast permission switch

OS

2b. Bounded hardware timer and fast permission switch

daemon

Accessible

Protected
Protect

Fast permission switch

OS

2b. Bounded hardware timer and fast permission switch

daemon

Inaccessible

0K
100K
200K
300K
400K
500K

4KB 16KB 32KB 64KB

Permission switch Memory copy

CPU cycles for batched buffer protection

Hitchhike the logs (fast)
Hitch a ride to protect logs by removing OS’s memory permissions.

We evaluated HITCHHIKER

Security environment’s TCB and attack surface

Log protection efficiency

Log protection effectiveness

Secure environment

Issues Issues

I01. SW drivers run in the TEE kernel space I02. Wide interfaces between TEE system subcomponents

I03. Excessively large TEE TCBs I04. TAs can map physical memory in the NW

I05. Information leaks to NW through debugging channel I06. Absent or weak ASLR implementations

I07. No stack cookies, guard pages, or execution protection I08. Lack of software-independent TEE integrity reporting

I09. Ill-supported TA revocation I10. Validation bugs within the secure monitor

I11. Validation bugs within TAs I12. Validation bugs within the trusted kernel

I13. Validation bugs in secure boot loader I14. Bugs in memory protection

I15. Bugs in configuration of peripherals I16. Bugs in security mechanisms

I17. Concurrency bugs (from multiple TAs) I18. Software side-channels

Mitigated issues of off-the-shelf environment (TrustZone)

16/18 TrustZone issues were mitigated.

TCB: Reduced more than 10× compared to off-the-shelf environments.

Effectiveness on controlled short log protection

0.2

0.4

0.6

0.8

1.0

0
20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0
100 200 300 400 500 200 400 600 800 1000

Protection Completion Ratio

Time Taken (µs)

1014.14514.96112.22

100us timer 500us timer 1ms timer

Effectiveness on controlled short log protection

0.2

0.4

0.6

0.8

1.0

0
20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0
100 200 300 400 500 200 400 600 800 1000

Protection Completion Ratio

Time Taken (µs)

1014.14514.96112.22

100us timer 500us timer 1ms timer

0

10

20

30

40

50

60

70

80

90

100

Effectively protects all attack-relate logs and 97.5% all
remaining logs (in our evaluated CVEs).

Total time (ms) to compromise the full system

1ms protection delay

Performance efficiency on real-world applications

0%

10%

20%

30%

40%

50%

60%

Httpd Nginx Redis Memcached MySQL Geo-mean

HitchHiker OmniLog

0%

5%

10%

15%

20%

25%

30%

35%

7zip OpenSSL Octave Firefox Wget Geo-mean

HitchHiker OmniLog

Both are efficient in systems
 with low log throughput.

61.9% lower overhead on
high-throughput systems.

Runtime performance overhead

The state of the observability protection systems

• Low assurance in-memory environments and inefficiency under stress.

HitchHiker’s design principles for observability protection

• Principled debloating strategies to designing high-assurance environments.

• Controlled protection delay using bounded timer and fast permission switches.

Code will (soon) be available at: THANKS!

Takeaways

	Slide 0: The HITCHHIKER’s Guide to High-Assurance System Observability Protection with Efficient Permission Switches
	Slide 1: Observability captures a system’s historical states
	Slide 2: Logs are vulnerable when the OS is compromised
	Slide 3: Logs are vulnerable when the OS is compromised
	Slide 4: Logs are vulnerable when the OS is compromised
	Slide 5: Prior work: in-memory protection with eventual persistence
	Slide 6: Prior work: in-memory protection with eventual persistence
	Slide 7: Problem 1: Low-assurance off-the-shelf environment
	Slide 8: Problem 1: Low-assurance off-the-shelf environment
	Slide 9: Problem 2: High synchronous protection overhead
	Slide 10: Problem 2: High synchronous protection overhead
	Slide 11: Research questions we ask
	Slide 12: Research questions we ask
	Slide 13: Requirements for high-assurance secure environment
	Slide 14: 1a. Codebase with only required isolation primitives
	Slide 15: 1a. Codebase with only required isolation primitives
	Slide 16: 1a. Codebase with only required isolation primitives
	Slide 17: 1a. Codebase with only required isolation primitives
	Slide 18: 1a. Codebase with only required isolation primitives
	Slide 19: 1b. Debloat software driver interface by record-replay
	Slide 20: 1b. Debloat software driver interface by record-replay
	Slide 21: 1b. Debloat software driver interface by record-replay
	Slide 22: 1b. Debloat software driver interface by record-replay
	Slide 23: 1b. Debloat software driver interface by record-replay
	Slide 24: 1b. Debloat software driver interface by record-replay
	Slide 25: 1c. Protect userspace daemon under native OS
	Slide 26: 1c. Protect userspace daemon under native OS
	Slide 27: 1c. Protect userspace daemon under native OS
	Slide 28: 1c. Protect userspace daemon under native OS
	Slide 29: Requirements for efficient and effective log protection
	Slide 30: Requirements for efficient and effective log protection
	Slide 31: Requirements for efficient and effective log protection
	Slide 32: Requirements for efficient and effective log protection
	Slide 33: Requirements for efficient and effective log protection
	Slide 34: 2a. Unified log collection using eBPF
	Slide 35: 2a. Unified log collection using eBPF
	Slide 36: 2b. Bounded hardware timer and fast permission switch
	Slide 37: 2b. Bounded hardware timer and fast permission switch
	Slide 38: 2b. Bounded hardware timer and fast permission switch
	Slide 39: 2b. Bounded hardware timer and fast permission switch
	Slide 40: 2b. Bounded hardware timer and fast permission switch
	Slide 41: We evaluated HITCHHIKER
	Slide 42: Secure environment
	Slide 43: Effectiveness on controlled short log protection
	Slide 44: Effectiveness on controlled short log protection
	Slide 45: Performance efficiency on real-world applications
	Slide 46: Takeaways

