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1 Background
The rapid expansion of interconnected smart devices has
spurred diverse applications—from consumer technologies
like smart city infrastructures to healthcare, wearables, and
home automation. Advancements in industrial automation,
robotics, augmented reality, and autonomous vehicles fur-
ther underscore their growing impact, especially in mission-
critical systems such as cyber-physical systems (CPSs). To
support these applications, increasingly complex functional-
ities are integrated onto a single system-on-chip (SoC).
Firmware, the core software embedded in these smart

devices, operates at the highest privilege level to support
platform-specific tasks. However, its large codebase intro-
duces considerable vulnerabilities. Once the firmware is ex-
ploited, the entire device is compromised by attackers. Recent
studies have continuously revealed such vulnerabilities [3, 4].
Given these threats, how can we assess the runtime security
state of critical firmware and reliably reset a device when a
compromise is detected, according to security policies?

2 System and Threat Model
We consider two components during normal operations: the
device and the remote verifier. The remote verifier is a trusted
entity operating on backend servers or in the cloud, respon-
sible for managing interconnected devices [7]. We adopt the
following assumptions and consider these attack vectors:
• Untrusted device firmware. While initially benign, the
firmware is vulnerable due to bugs, making it susceptible
to full compromise by external remote attackers. Simi-
larly, while cryptographic protocols and key management
schemes are secure, they remain susceptible to firmware
compromise. If compromised, an attacker can abuse cryp-
tographic keys to impersonate the device and tamper with
its communication channel with the remote verifier.

• Trusted early boot process. The early boot process is al-
ways trusted, as the firmware bootloader images are per-
manently burnt and stored in the secure regions (trusted
boot ROM and SRAM) [7, 10].

Out-of-scope.We assume the hardware is trusted. Physical at-
tacks and micro-architectural side-channels are out of scope.

3 Goals and Requirements
Our goal is to design an extensible device measurement frame-
work, allowing remote verifiers to register multiple services and
reliably inspect a device’s runtime security states and recover

it, regardless of device firmware compromise. To achieve this,
the following requirements must be met:
R1. Isolated on-devicemonitor. A secure, most privileged
monitor must reside on the device. The privilege allows it to
capture firmware-level states (e.g., runtime memory, CPU,
and register contexts). Its isolation ensures state integrity
even if the firmware is compromised.
R2. Extensible firmware state monitoring. The frame-
work should allow the verifier to dynamically adjust moni-
toring services at runtime, measuring diverse device states
in accordance with evolving security policies.
R3. Secure communication channel. Communication
between the device monitor and the remote verifier must be
authenticated and immune to impersonation. The verifier
must attest to the monitor to ensure digest integrity, while
the monitor must verify remote requests to protect privacy.
R4. Non-deniable device recovery. Upon receiving state
digests from the monitor, the verifier must assess the device’s
security and, if compromised, force a reset to a benign initial
state within a controllable, non-deniable delay.

4 Intra-Firmware Isolation
At the core of the privileged on-device monitor is an
intra-firmware isolation design. This design partitions the
firmware privilege level into two compartments: the depriv-
ileged Firmware and the high-privilege Monitor [2]. Fun-
damentally, isolation is achieved using hardware memory
protection primitives—such as ARM’s Permission Indirection
Extension (PIE) [1] and RISC-V’s enhanced PMP (ePMP)—
which restrict the CPU’s accessible memory regions.

Hardware-assisted memory isolation maintains a pro-
tected region for the Monitor’s code and data, enabling a
paravirtualization-like mechanism that intercepts and han-
dles predefined privileged instructions [2, 6, 9]. This mech-
anism enforces the following security invariants through
software instrumentation, traps, and binary verification:

I1. Firmware and Monitor are partitioned into two distinct
physical regions. The code and data sections of Firmware and
Monitor are distinct at compilation. During early boot, the
Monitor memory is protected (by configuring the hardware
memory protection primitives). Once the Monitor is loaded,
it also enforces the memory protection primitives to always
restrict Firmware’s access permissions (I2).

I2. All privileged instructions and control interfaces are only
inside Monitor.At compilation, the Firmware is instrumented,
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replacing privileged instructions with secure calls to the Mon-
itor. Such control interfaces/instructions include system reg-
isters (e.g., used to configure memory isolation primitives),
exception vectors (to control the interrupt flows), and certain
MMIO regions (to control devices, explained in §7).

I3. Firmware can only call the Monitor through fixed secure call
gates. The gates serve as explicit privilege transition bound-
aries. At such gates, the Monitor securely saves and restores
current contexts, verifies the requested privileged operations,
and executes them on behalf of the Firmware. Note that such
gates are deterministic and atomic, ensuring the privilege is
only preserved during executing the Monitor, and cannot be
redirected to the Firmware even at interrupts [2].

5 Extensible Firmware Monitoring
The trusted Monitor, residing at the firmware hardware priv-
ilege level (§4), is able to monitor and profile the Firmware,
and the whole-system states, at runtime.

An eBPF-like mechanism is integrated into the Monitor to
support extensible and dynamic hot-pluggable monitoring.
In particular, the remote verifier specifies the target device
states to be traced, and programs the tracer-programs. Such
tracer-programs are sent to the Monitor, which loads them
to collect runtime device behaviors. We illustrate typical
tracer-programs, which could be applied according to the
security policies, in the following paragraphs.
• Memory scanner. This scans firmware memory (e.g., ex-
ecutable sections) to detect modifications. For simple de-
vices, any alteration to the firmware code is identified and
reported to the remote verifier.

• Firmware control flow attestation. This allows fine-grained
tracking of runtime firmware execution, by accumulating
control flow information into a hash measurement. The
firmware can be instrumented (at selected control flow
graph edges [8]) to call the Monitor. Alternatively, hard-
ware tracing (e.g., ARM Embedded Trace Macrocells) can
be employed using a protected control interface (I2, §4).

• Full system auditing. This allows system-wide behaviors
(beyond the low-level firmware activities) to be captured.
For instance, the Monitor may intercept and trace runtime
device network event packets [10].

6 End-to-End Secure Communication
All communications between the Monitor and the verifier
are authenticated and transmitted over a secure channel.
A two-way secure channel is established by generating

and exchanging cryptographic key pairs during machine pro-
visioning [7]. Specifically, the verifier’s public key is stored in
theMonitor’s data region, enabling the device to authenticate
signatures. Meanwhile, the device’s key pair—derived from
the Device Identifier Composition Engine (DICE) [7]—allows
the verifier to retrieve the device’s public key at provisioning.

During firmware boot, the trusted early boot process and

the Monitor are loaded first, generating a sealed firmware
hash using the cryptographic key before any untrusted
firmware code is executed. This enables the verifier to per-
form remote attestation before establishing the channel.

7 Secure Timer-Enforced Device Recovery
At device initialization, the Monitor is configured with a pro-
tected watchdog timer, with a verifier-controlled interface,
to enforce a secure, controllable device reset.
Towards a protected watchdog timer, the Monitor traps

the timer and locks it down (I2, §4), by protecting its control
interfaces (e.g., MMIO regions) and exclusively controlling
its interrupt handler [5, 10]. By doing so, the remote verifier
is able to configure a hard device reset deadline, such as a
one-hour interval, which periodically forces the device to
be recovered to its initial state, regardless of whether the
firmware is compromised or not.

To avoid frequent and unnecessary device resets (when it
is benign), only the verifier is allowed to communicate to the
Monitor, which feeds the watchdog and extends the reset
deadline (through the secure channel, §6). In particular, the
verifier periodically receives and evaluates device state di-
gests (§5). Upon successful measurement, the verifier would
extend the reset deadline to keep the device alive [7].
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