
BlackMirror: Preventing Wallhacks in 3D Online FPS Games
Seonghyun Park

Seoul National University
shpark95@snu.ac.kr

Adil Ahmad
Purdue University

ahmad37@purdue.edu

Byoungyoung Lee∗
Seoul National University
byoungyoung@snu.ac.kr

ABSTRACT

Online gaming, with a reported 152 billion US dollar market, is
immensely popular today. One of the critical issues in multiplayer
online games is cheating, in which a player uses an illegal methodol-
ogy to create an advantage beyond honest game play. For example,
wallhacks, the main focus of this work, animate enemy objects on a
cheating player’s screen, despite being actually hidden behind walls
(or other occluding objects). Since such cheats discourage honest
players and cause game companies to lose revenue, gaming compa-
nies deploy mitigation solutions alongside game applications on
the player’s machine. However, their solutions are fundamentally
flawed since they are deployed on a machine where the attacker
has absolute control.

This paper presents BlackMirror, a new game design with a
trusted execution environment, Intel SGX. Leveraging strong data
isolation guarantees provided by SGX, BlackMirror addresses
the root cause of wallhacks by storing sensitive game data within
an SGX-protected region. BlackMirror overcomes various chal-
lenges in achieving its goal including partitioning game client to
avoid SGX’s memory limitations, as well as cross-checking in-
puts provided by untrusted keyboard and mouse. Furthermore,
BlackMirror supports GPU-based 3D rendering by performing
highly-accurate visibility testing and disclosing sensitive data only
when it is required in a given game scene. We protect Quake II
using BlackMirror, and our evaluation results demonstrate that
BlackMirror-protected Quake II is fully functional and secure.
More specifically, BlackMirror incurs 0.57 ms per-frame delays on
average, which meets modern game’s performance requirements.
On the other hand, the secure baseline design using software-only
rendering incurs 25 ms per-frame delays on average, signifying the
efficient yet secure design of BlackMirror.

CCS CONCEPTS

• Security and privacy → Domain-specific security and

privacy architectures; Trusted computing.
KEYWORDS

multi-player games; wallhacks; Intel SGX

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417890

ACM Reference Format:

Seonghyun Park, Adil Ahmad, and Byoungyoung Lee. 2020. BlackMirror:
Preventing Wallhacks in 3D Online FPS Games. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (CCS
’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3372297.3417890

1 INTRODUCTION

Online gaming is one of the most popular entertainment platforms
in the world. With the soaring popularity of electronic sports, com-
peting in video games has also become a mainstream profession
for many people—it is reported that online game markets gener-
ated 152 billion US dollars [1]. Among online games, first-person
shooter (FPS) games are an incredibly popular genre. In the FPS
game, a player is centered with his weapon, shown a first-person
perspective onto a virtual game scene. The common goal of the FPS
game is to find and eliminate the other players (or teams). Common
FPS games include Doom, Quake, Overwatch, Fortnite, and PUBG.

However, due to the competitive nature of online games, many
players are intrigued to use illegal methods (or cheats) to create
an advantage beyond honest players. Such cheating behaviors are
not inconsequential in today’s online games—according to a Forbes
report [2], a total of 37% gamers have cheated before. With such
behaviors, game play is not fair, severely ruining fun for participat-
ing players and integrity of competitive games. The same report
mentions that cheating severely impacts the gaming experience
of players—88% of gamers stated that they experienced an unfair
game due to the cheating.

Cheating in online games is very serious for game companies
whose revenue streamheavily depends on player satisfaction. There-
fore, many gaming companies are deploying games with anti-cheat
solutions [3–5]. These solutions, operating either at the user-level
or privileged levels, are designed to detect cheating attempts. How-
ever, these solutions are ad-hoc (i.e., result in arms races between
cheaters and game developers), and/or require installing propri-
etary (closed-source) kernel modules or drivers on the player’s
machine. Importantly, these solutions do not solve the fundamental
issue surrounding cheating—the attacker has complete control on
their machine and can compromise game clients, extract sensitive
information, and bypass anti-cheat solutions.

Particularly focusing on FPS games, wallhack [6] are one of the
most commonly-used cheats. In particular, the common exploit
pattern of wallhacks is to animate enemy players hiding behind
walls (or other occluded entities) in front of the player. Therefore,
the dishonest player can easily spot an unsuspecting enemy player
without being visible on the other player’s screen. The root cause
behind wallhacks is that the dishonest player has access to states
belonging to sensitive entities (e.g., opponent’s position). In partic-
ular, the dishonest player locate relevant states in game clients [7],
eavesdrop on or tamper with these states as they are transmitted

https://doi.org/10.1145/3372297.3417890
https://doi.org/10.1145/3372297.3417890

through the CPU-GPU communication channel [8], or tamper with
the GPU computation itself [9].

In this paper, we present BlackMirror, a system that prevents
wallhacks in multiplayer online FPS games using Trusted Execution
Environments (TEEs). In particular, BlackMirror protects security-
sensitive data (e.g., opponent entities) and only permits access if
such data is required to be rendered in the game scene. In this regard,
the key idea behind BlackMirror is to strictly safeguard such
sensitive data with a TEE, particularly Intel SGX. Intel SGX is a good
fit since it provides hardware-assisted isolation with confidentiality
and integrity guarantees, as well as remote attestation capabilities
to attest the correctness on untrusted playermachines. Furthermore,
SGX is already deployed on popular gaming processors, i.e., all Intel
desktop processors.

However, realizing BlackMirror is not straightforward. First,
it is unclear what sensitive data should be stored within the SGX-
protected region, an enclave. From a security stand-point, it is
best to store everything inside the enclave, but due to memory
limitations of SGX enclaves §5, this will incur prohibitive overhead.
Second, BlackMirror should maintain compatibility with existing
game client functionality while ensuring correctness and security.
In particular, existing game clients update internal gaming contexts
(e.g., movement of and events from all players in the game) using
server messages and keyboard/mouse inputs. Third, a game client
should leverage GPU to accelerate 3D rendering performance, but
the protection realm of SGX does not include the GPU. While
software-only rendering is possible, it is remarkably slow (as we
demonstrated in §9.2).

To solve the aforementioned challenges, BlackMirror features
the following design characteristics. First, BlackMirror carefully
partitions the game client into trusted (i.e., enclave) and untrusted
components, ensuring security while reducing enclave memory
consumption. In particular, BlackMirrormaintains a thin enclave-
layer that stores only data relevant to sensitive game entities (i.e.,
entities directly involved in determining the view of the player).
In particular, such data includes: a game state related to enemy
players, occluding entities such as walls and other supporting data
such as geometry information related to these sensitive entities.

Second, BlackMirror provides in-enclave functionality for se-
cure updates to the protected sensitive entities. In particular, these
updates are received from the untrusted world through (a) server’s
update messages received through attacker-controlled network
interfaces, and (b) potentially malicious inputs received from un-
trusted I/O devices such as keyboard and mouse. To solve these
issues, BlackMirror creates a secure channel with the game server
terminating within the enclave, and synchronizes all provided up-
dates with the information sent by the attacker to the game server.
As a result, BlackMirror is able to detect discrepancy in provided
inputs or forces the attacker to reveal itself to other players if they
attempt a wallhack.

Lastly, to support vital hardware-acceleration using GPUs with-
out compromising on security, BlackMirror implements a trusted
visibility test within the enclave. For each frame, BlackMirror
performs visibility-testing to determine which of the requested en-
tities by the untrusted game client should be visible on the player’s
screen. Using trusted information stored regarding sensitive enti-
ties, BlackMirror is able to determine with high accuracy whether

this entity should be visible in this frame. Furthermore, thanks to
recent advances in floating-point computation on CPUs (e.g., AVX
and SIMD instructions), BlackMirror can perform this rapidly
and in a scalable manner.

We implemented BlackMirror-protected Quake II, an open
source 3D FPS game. According to our evaluation, BlackMirror-
protected Quake II demonstrated that it is not only fully functional
but also secure. To be more specific, BlackMirror incurs 0.57 ms
per-frame delays on average, which meets modern game’s perfor-
mance requirements (i.e., considering 60 fps game, the time gap
between frames is 16 ms). On the other hand, the secure base-
line design using software-only rendering incurs 25 ms per-frame
delays on average, signifying the efficient yet secure design of
BlackMirror. From the security perspective of BlackMirror, the
accuracy of visibility testing (i.e., declassification accuracy) is at
least 97%, suggesting that most of sensitive entities are accordingly
secured against cheaters.

To summarize, this paper makes the following contributions:
• Design. Understanding the root cause of wallhacks, we de-
signed BlackMirror, an SGX-based game client to fundamen-
tally prevent wallhacks. In order to leverage GPU-based render-
ing while preserving SGX’s security assurance, BlackMirror
designs an in-enclave visibility testing and declassify safety-
confirmed data to GPU.

• Implementation. We implemented BlackMirror-protected
Quake II, an open source 3D FPS game. Our evaluation con-
firms that BlackMirror-protected Quake II is fully functional
while meeting gaming user’s experiences.

• Security Analysis. We thoroughly analyze the security as-
pect of BlackMirror. We exhaustively consider all possible
attacks that can be launched by a wall-hack motivated attack-
ers, and analyze why BlackMirror is secure against those
attacks.

2 BACKGROUND

This section provides background information relevant to the de-
sign of our system, BlackMirror. We first describe online game
architecture (§2.1). Next we explain how the rendering pipelines
in the game operate (§2.2), and then describe Intel Software Guard
eXtensions (SGX) (§2.3).

2.1 Multiplayer FPS Game Architecture

Modern multiplayer first-person shooter (FPS) games [10] operate
on the client-server architecture (shown in Figure 1). In particular,
multiple clients connect to a dedicated server, which is usually
remote and operated by the game operating companies.

The game state is a set of entity states, where an entity refer to
each object in the game. Such an entity can be player’s characters,
supplies and environmental objects. Each entity has state such as
the 3D origin (i.e., its coordinates in 3D space), angles (e.g., the
direction that an entity is facing), etc. Figure 2 shows an example
entity state from Quake 2 [11].

The server and clients maintain their own copy of a game state,
which we refer to a global game state in the server and a local game
state in clients, and each has a different mechanism in updating the
game state.

Inputs GPU

Server
Global

State

Game
Engine

2 Update
Encoder

Client

Prediction
Engine Decoder

Geometry,
Textures
& Shaders

Local

State

4 Update

5
Predict

1 Client inputs 3 Update Messages

Client local updates Client-to-server updates
Server-to-client updates

Figure 1: Client-server architecture of 3D online games

A Global Game State in Server. The server plays the role of a
central authority that stores the global game state. In particular, the
server is acting like an event-driven system, updating its state (2)
in response to client inputs (e.g., mouse clicks and keyboard inputs
as shown in 1) that are captured within a certain interval, called a
frame. For example, if the client moves the mouse, the command
is sent to the server, which updates the view angle of this player’s
character in its corresponding entity.
A Local Game State in Client. A game client holds a local game
states to render the game scenes. In modern games, there are two
major sources of local state changes: 1) Server update message and
2) Local state prediction.

The server periodically sends update messages to all clients (3),
which indicates how local states should be updated in order to syn-
chronize with the global state. Then the client updates its local state
with the messages (4). Leveraging this synchronization method
alone has an issue to support both smooth gameplay experience and
low network bandwidth. To support smooth gameplay experience,
the update message should be sent very frequently because the
scene rendering should be performed based on a very up-to-date
game state. However, such frequent updates impose severe network
bandwidth. In order to address this issue, modern games employ
the local prediction method that we describe next.

The local state prediction is to predict the local game state based
on the player’s input and elapsed time from the last frame. (5). For
instance, the client records the fraction time, when the key was
down, multiply a speed value, and add it to the previous position
of the player. Predicting is crucial for providing smoother scene
update, since the update messages from the server arrives less
frequently than the frame refresh rate (e.g., 60 fps) [10]. Therefore,
by combining client-side prediction with periodic state updates,
modern games are able to provide smoother gameplay experiences,
while keeping network bandwidth low.

2.2 Game Rendering Pipeline

In this subsection, we describe how a client render the game on
there machine so as to display the game scene to the display.

(𝑥, 𝑦, 𝑧)

Entity

angles

origin

geometry

textures

· · ·

pitch

yaw

roll

Textures

Geometry

Figure 2: An example entity in Quake II [11]

Coordinate Systems in 3DRendering Pipeline. In general, ren-
dering is the process of synthesizing multiple 3D models, thereby
generating a 2D scene shown to the user’s display. During the ren-
dering process, a sequence of space transformation are performed,
where each transformation transforms from one space to the next:
1) Local space; 2) World space; 3) Clip space; and 4) Screen space.
Local space is the 3D space that each entity is represented with
its own local coordinates (i.e., each entity has an independent 3D
coordinate system). Then the local space is transformed into the
world space. The world space is the 3D space that all the entities
are projected into the game world space (i.e., the game map). So in
this world space, all the entities are positioned in a single shared 3D
coordinate system, which represents the 3D game world. Next, the
world space is transformed into the clip space, which is the 3D space
that is captured by the camera (i.e., the self-player). Finally, the clip
space is transformed into the screen space, which corresponds to
the final 2D scene that will be shown to the user’s display. In the
followings, we describe the rendering process, especially focusing
on the different computational roles of CPU and GPU.
Stage 1: Rendering Preparation on CPU. A general idea of
graphics rendering pipelines is that CPU performs light-weight
tasks and GPU performs the rest heavy-weight computation. In
particular, the game client, on CPU, prepares the transformationma-
trix (e.g., worldToClip and localToWorld) from the entity states.
Then such matrices and auxiliary data (e.g., model and shaders) are
sent to the GPU, which performs expensive computations including
matrix computation and rasterization.

In the rendering preparation step, the client prepares i) two trans-
formation matrix, worldToClip and localToWorld; and ii) auxil-
iary rendering data (e.g., models and shaders). The worldToClip
is a matrix that transforms an entity in the world space into an
entity in the clip space. This matrix is derived using the origin and
angles of the self-player entity, and the field-of-view, which is an
angle that represents the visible range. (1) The localToWorld is
a matrix transforming an entity in the local space into an entity
in the world space. This matrix is calculated using the origin and
angles of each entity that are being transformed. (2)

The client also prepares the auxiliary rendering data (such as
models and shaders) associated with each entity. In particular, the
geometry stores the the shape of an entity in local space, and the
texture represents the color of the surface (see Figure 2). Addition-
ally, the shaders, namely the vertex shader and the fragment shader,
defines the computation that is run on the GPU.

Finally, two transformation matrices and the auxiliary rendering
data is sent to the GPU (3), which starts the next rendering pipeline
stage, geometry pipeline.

GPU

Geometry Pipeline

Vertex
Processor

Primitive
Assembly

Rasterization Pipeline

4 5

6

7

Rasterizer
Depth Test

Depth map

Fragment
Processor

Post
Processing

Screen

CPU

Entities

Self
origin,angles

field-of-view

Client (Rendering Preparation)

worldToClip
1

Others

model

origin,angles

model

origin,angles

model

origin,angles

localToWorld

Geometry

Textures

localToWorld

Geometry

Textures

localToWorld

Geometry

Textures

2

K
e
r
n
e
l
D
r
i
v
e
r

3

Local Space World Space Clip Space Depth map

self 𝑒1

𝑒2 𝑒3

wall

fie
ld-
of-
vie
wself 𝑒1

𝑒2

𝑒3
𝑒2𝑒3

𝑒1 is discarded (out-of-view)

𝑒3 wall

localToWorld worldToClip

𝑒2 is discarded (occluded)
𝑒3 is displayed (visible)

wall is displayed

Figure 3: Overview of rendering pipeline (top) and corresponding transformations in coordinate systems (bottom)

Stage 2: Geometry Pipeline onGPU. Upon receiving the request
from CPU, GPU starts the geometry pipeline stage. The goal of
this stage is to apply a series of coordinate transform to entities,
therefore transforming them from the local space to the clip space.

The most crucial units in this stage is the vertex processor, which
applies the transformations defined in the vertex shader to input
geometry. A typcical vertex shader define the following transfor-
mation, therefore transforming from the local space into clip space:
v’ = worldToClip * localToWorld * v.

As a result, entities in the local space, 𝑒1, 𝑒2, 𝑒3 and the wall
are transformed into the clip space as shown in Figure 3. Notably,
the 𝑧 value in the clip space represents the distance between an
entity and the camera, which we refer to depth value. Next, the
primitive assembler groups vertices into geometric primitives such
as triangles.

After completing the geometry pipeline, vertices in clip space are
passed to the next stage, the rasterization pipeline, with additional
information about their grouping.
Stage 3: Rasterization Pipeline on GPU. This stage takes an
entity in the clip space and determines i) which portion of an entity
is shown to the 2D screen, and ii) its final color.

First of all, the rasterizer transforms input clip space into a screen
space, where (𝑥,𝑦) coordinates correspond to the index of pixel in
the final 2D scene (4 → 5). Then, the GPU also computes missing
attribute values of each pixel (e.g., the depth value) that overlaps
with an entity. Recall that previously the GPU only knows the
attributes of points in the geometry, not the surfaces.

Next, the depth test stage takes an entity in the screen space and
determines visible pixels. The primary goal of depth testing is to
keep the correctness of the rendered scene, e.g, entities behind the
wall should not be drawn. To this end, the GPU keeps an internal
data structure, depth map, which keeps the closest depth values
that have been rendered. For example, imagine the wall in Figure 3
is rendered in advance to 𝑒2, and the GPU is now about to render
it. At this point, the depth values of the wall is already stored in
the depth map, and these are closer than the depth values of 𝑒2.

Consequently, the GPU discards the entity 𝑒2, thus the following
stages are not performed for 𝑒2. (6)

Lastly, the fragment processor runs the fragment shader code
for all visible visible entities to compute their color. In particular,
it performs texture mapping and lighting to compute the color for
each pixel (7), which comprises expensive operations.

2.3 Intel Software Guard eXtensions (SGX)

Intel SGX [12, 13] allows a user-level process to create its own
isolated execution environment, called enclave, which is protected
against all privileged softwares including OS and hypervisors. En-
claves reside in a pre-determined (at boot-time) location of physical
memory called the Enclave Page Cache (or EPC). However, Intel
SGX has various well-known limitations.

In particular, SGX does not provide trusted I/O paths off-the-
shelf. Enclaves can seal [13] persistent data before storing it on the
disk and encrypt network communication, yet there are scenarios
where sealing is not helpful. For example, GPU communication
is in plaintext, due to lack of encrypted communication capabili-
ties within commodity GPUs. On the other hand, data from input
devices such as a keyboard and a mouse are not protected, either. Al-
though existing research has considered this problem, they require
complicated changes to the software or hardware ecosystem of SGX,
such as using a trusted hypervisor [14], extra hardware [15, 16] or
hardware changes [17, 18].

3 THREAT MODEL AND ATTACK SUMMARY

3.1 Threat Model

We assume the attackers control their machine including the periph-
eral devices, and privileged software including OS and hypervisors.
In particular, an attacker i) is capable of monitoring and modifying
the client memory, ii) eavesdropping on and tampering with the
communication between the CPU and the GPU and/or iii) read or
write kernel memory.

(a) Benign view (b) Wallhack view

Figure 4: An example of wallhacks. The opponent entity be-

hind the wall is rendered to the scene, which is highlighted

with the red box in Figure 4b.

We assume that game server is correctly implemented, run by
a trusted party (e.g., a game company), and is not colluding with
a player. This is also a fair assumption since the game companies
have an incentive to maintain their reputation amongst players.

On the other hands, we leave the following as out-of-scope:
i) side-channels and micro-architectural attacks and ii) software
vulnerability in enclaves. SGX has been a famous target for various
side-channel attackers and micro-architectural attacks [19–25]. In
this work, we are not dealing with these attacks. Furthermore,
enclave code possibly contains software vulnerabilities, e.g. buffer
overflow [26, 27], and existing solutions [28, 29] should be used to
prevent them.

3.2 Wallhack Cheats

The attacker wants to perform better than other players in com-
petitive online games. To achieve this goal, the attacker uses the
infamous wallhack cheats [30], which result in hidden entities (e.g.,
rival players behind a wall or out-of-view) appearing on the at-
tacker’s screen. For example, consider entities in the world space
of Figure 3, where only 𝑒3 is visible, and entity 𝑒2 and 𝑒3 are hidden
at this point (𝑒2 is blocked by the wall and 𝑒1 is out-of-view).
RootCause ofWallhacks. The root cause of wallhacks originates
from an inherent feature of current online multiplayer games, i.e.,
the client application holds more states than required to render a
scene. To elaborate, the server sends information of non-visible
opponent entities to the client to improve gameplay (§2.1). As far
as honest players are concerned, these states are inconsequential
since they will not be rendered in the current scene. However, the
attackers can exploit these states to perform a wallhack.

Unfortunately, filtering unauthorized information at the server
has various issues. In particular, the server has to perform addi-
tional computation for each player, especially if many clients are
connected to the server at the same time. Additionally, filtering
information at the server can result in unpredictable gameplay.
For example, the user may observe visual glitches (e.g., opponents
appearing out of thin air), if the server-side filtering is too strict.
Furthermore, the server lags behind the client due to network de-
lays, and therefore server-side filtering cannot be as precise as the
client-side solutions. As a result, server-side filtering ends up being
too conservative.

Figure 3 describes how unauthorized states propagate within the
rendering pipeline, until they are discarded. In particular, the client
application blindly runs rendering pipeline without performing
visibility-testing. These states propagate in the memory and the
GPU, until depth-testing is performed and they are discarded.

Attack Surfaces. In the following, we summarize possible attack
surfaces of wallhacks, based on investigation of publicly available
wallhacks [8, 9, 31–33]. Recall that the client is provided with states
of non-visible entities and it blindly issues rendering calls for them,
therefore sensitive information propagates from the client memory
to the GPU.
Game Client. The attacker can read sensitive information from
client memory, or modify the client to tamper with the its execution.
Typically attackers attempt to locate the opponents’ entities in the
memory [7, 34], read their positions and overlaying the scene with
these information [35] Alternatively, the attackers may exploit
existing code to render extra information on the scene. [33]
Communication between CPU and GPU. An attacker can exploit
the kernel subsystem or communication between the CPU and the
GPU to leak secrets and manipulate rendering result. The rendering
requests issued by the client are mediated by the kernel subsys-
tem or the driver before transmission to the GPU. For example,
an attacker tampers with the rendering process by hooking the
rendering functions [8, 9].
GPU Computation. Lastly, an attacker can undermine the integrity
of computations performed on the GPU. For example, an attacker-
controlled driver may modify the shader, or reject certain rendering
requests (e.g., skip rendering the walls). Consequently, if the GPU
issues a rendering requests for an opponent entity behind the walls,
the opponent entity will appear on the screen. On the other hand,
an attacker may fool the GPU to disable depth testing of certain
entities [8], therefore drawing the entities over the wall.

4 LIMITATIONS OF CURRENT ANTI-CHEAT

In the following, we describe the shortcomings ofmodern anti-cheat
software, which we try to overcome with our proposed design.
CommercialAnti-Cheat Software. Many commercial games are
deployed with third-party anti-software [3–5, 38] or their own anti-
cheat solutions [39]. However, we observe that these approaches
fail to provide sufficient security guarantees, resulting in an arms
race between attackers and anti-cheat developers.

As shown in Figure 5a, anti-cheat solutions are commonly de-
ployed as an external process, and an anti-cheat kernel driver [3,
6]. In particular, anti-cheat software continuously challenges the
player’s game client to prove there is no violations. For example, it
looks for malicious contents (i.e., known cheats) loaded on the client
memory, detects hypervisors and manipulated control flow [40].

Despite their efforts, tech-savvy cheaters keep bypassing such
defenses and the anti-cheat developers keep patching their miti-
gation solutions in response. Even worse, such an arms race has
moved to the kernel space, since modern cheats operates in ker-
nel or hypervisor to avoid anti-cheat and the game companies
deploy specific anti-cheat kernel modules as countermeasures. In
consequence, the users are enforced to run kernel-level anti-cheat
modules to play the game, and unfortunately this opens up new
attack vectors [6, 30].

5 WALLHACK PREVENTION USING TEEs

In this section, we explore potential designs to protect games against
wallhacks by leveraging the confidentiality and integrity protec-
tions provided by TEEs.

GPU

Geometry Raster
z-bufferDepth Map

CPU

Game Client

Entity
States

Anti-Cheat

Process

Kernel Driver

Anti-Cheat

Driver

: Trusted Components

: Attack Surfaces

(a) Anti-Cheat Software [3, 4]

GPU

Geometry
Raster
z-bufferDepth map

CPU

Game Client

Entity
States

Kernel Driver

(b) Client in Enclave [36]

GPU

CPU

Game Client

Entity
States

Software Renderer

Geometry
Raster
z-bufferDepth map

Kernel Driver

(c) SoftwareRenderer [37]

GPU + TEE

Geometry
Raster
z-bufferDepth map

CPU

Game Client

Entity
States

Kernel Driver

(d) Trusted GPU [17, 18]

GPU

Geometry
Raster
z-bufferDepth map

CPU

Game Client

Entity
States

BlackMirror

Trusted
States

BMTest

Geometry*
Raster*

z-bufferDepth map

Kernel Driver

(e) Our Approach

Figure 5: Comparisons between Our Approach, Anti-Cheat Software and Alternative Approaches Using Trusted Execution

D1. Enclosing Game Client within Enclave. The most straight-
forward design is to enclose the game client within an enclave (Fig-
ure 5b). In fact, this design is identical to typical use-cases of TEEs to
augment application security—running entire applications within
enclaves (e.g., using Library OS [36, 41]). As far as security is con-
cerned, this design prevents access to sensitive entities (i.e., vio-
lating confidentiality), and modifying the original client code (i.e.,
violating integrity).

However, by nature of existing TEEs, this design has a critical
limitation, i.e., it only protects the game client within the enclave,
and interfaces between the enclave and rest of the system are left
unprotected. In particular, the CPU-GPU channel and GPU compu-
tation (refer Figure 5b) are still possible wallhack attack surfaces.
Therefore, this approach by itself is insufficient.
D2. Software-only Rendering inside Enclave. Improving on
D1, this design implements the entire rendering pipeline within
an enclave. Therefore, this design is more secure as compared to
D1, because the rendering pipelines are now placed within the pro-
tection boundary of the TEE. However, this design has to perform
the software-only rendering, so it has to abandon crucial GPU-
acceleration for rendering computation. Therefore, the rendering
performance of such a solution is unimaginably slow (§9.2), and
incapable of meeting current gameplay requirements.
D3. Rendering with Trusted GPU. Previous works on trusted
hardware [15–18] have introduced promising ways of extending
trusted execution to external accelerators or augmenting SGX using
I/O protection. Unfortunately, these approaches require hardware
changes to existing architectures/devices, which would be challeng-
ing to achieve given the diversity of trusted execution environments
and devices commonly-used.

6 DESIGN OF BLACKMIRROR

In this paper, we present an alternative approach to defeating wall-
hacks using trusted execution. In particular, we present an anti-
cheat system, where players do not have to install untrusted pro-
prietary kernel modules on their machines and neither does the
game company have to deploy insecure obfuscation techniques to
hide sensitive information.

The key idea behind BlackMirror is to provision the game
applicationwith an SGX enclave and store all sensitive game entities
within the enclave, and therefore, inaccessible to the potentially
dishonest player. More specifically, sensitive game entities (e.g.,
enemy characters) reside in the enclave even when they should
not be visible to the player. To maintain compatibility with legacy
game engines, BlackMirror performs in-enclave updates to these
states based on secure messages from the server and player inputs.

Then, BlackMirror performs in-enclave visibility testing on
each frame to determine the visibility of entities requested by the
untrusted game client, in the current frame. If an entity is found
to be visible, BlackMirror declassifies such an entity—i.e., the
current state of the entity is provided to the untrusted client, so
that it can be processed by GPU. Otherwise, BlackMirror keeps
the states secure in the enclave. Note that this does not harm the
original functionality of our rendering pipeline, because non-visible
entities will not be processed anyways.

In the remaining, we first describe how BlackMirror boot-
straps on the machine and creates a secure connection with the
server (§6.1). Then we describe which entities are sensitive and thus
stored within an enclave (§6.2). Next, we explain how BlackMirror
updates the entity states within an enclave to maintain the game
functionality (§6.3). Lastly, we describe how BlackMirror per-
forms in-enclave visibility testing and declassifies an entity if found
to be visible in a given frame (§6.4).

6.1 Bootstrapping

In this subsection, we go over the bootstrapping of BlackMirror,
as an enclave module installed alongside the game client, as well
as the establishment of a secure channel with the game server.
Installation of secure enclave. BlackMirror is deployed as an
enclave, and which should be loaded by the game client. First of all,
the user downloads the game client from the web. Installation of a
game is done in a similar manner to typical games, except that the
installation includes an enclave program.
Attestation of correctness. Later, the user runs the client asks a
game server to join a game. Upon receiving a request, the server
challenges the client to prove the correct loading of BlackMirror

on its platform. In particular we take advantage of remote attesta-
tion [13, 42] of SGX. As a result, the server can enforce that every
connected client runs BlackMirror on an SGX-enabled CPU.
Establishing trusted channel with server. BlackMirror and
the game server generate a shared secret key, using Elliptic Curve
Diffie-Hellman (ECDH), that resides within the enclave and is valid
for the duration of the game. The shared key is not exposed out-
side the enclave and the server will not perform this step with-
out prior attestation. Furthermore, if the attacker stops running
BlackMirror during gameplay, their program will terminate in an
unstable state since server updates cannot be deciphered without
the shared key. They will also lose all updates stored within the
enclave memory. Lastly, server appends sequence numbers to the
messages that it sends to the client, to prevent replay attacks.

6.2 Protecting Entities for Trusted Visibility

Testing

The key idea of BlackMirror is to store potentially sensitive enti-
ties within an enclave. In order to still leverage GPU-based render-
ing, those secured entities are allowed to leave an enclave and pass
to GPU only if known to be visible. Hence, BlackMirror needs
trusted visibility testing such that it can faithfully tell entities can
leave an enclave or not. In this regard, the following of this subsec-
tion describes which entities should be stored within an enclave
for trusted visibility testing.
Entity Hierarchy and Visibility Testing. A hierarchy of game
entities can be illustrated as shown in Figure 6. Entities can be
classified into either self, sensitive, or non-sensitive entities. Self
entity represents the player him/herself, from which the camera
location is determined. Sensitive entities are the entities whose state
should not be leaked, unless it is necessary, for example, the enemy
entities or the supplies. On the contrary, the state of non-sensitive
entities are not crucial for the game play, even if it is leaked, for
example, the walls or environment objects. Non-sensitive entity
can be classified into i) occluders, which may affect the visibility of
sensitive entity (e.g., wall) and ii) non-occluders, which does not
block the view.

Player’s visibility is determined with following two factors: 1)
a visible volume, which considers if an entity is within a field-of-
view of the self-player; and 2) an occlusion, which considers if an
entity is obstructed by other entities (such as wall). For example,
in Figure 8, the visible volume is highlighted with shadow area,
and 𝑒2 and 𝑒3 survives visible-volume-based clipping, as they are
included in the shadow. However, 𝑒1 is non-visible entity because it
is placed outside the visible volume. Then considering the occlusion,
𝑒2 becomes a non-visible entity as it is behind the wall, which is
highlighted with darker shadow. As a result, only 𝑒3 is the visible
entity for the player, and 𝑒1 and 𝑒2 are non-visible entities.
Entities for Trusted Visibility Testing. BlackMirror protects
the entities that are relevant to visibility testing, namely self, sensi-
tive entities, and occluders. More specifically, BlackMirror needs
to guarantee the confidentiality of sensitive entities, because enemy
entity information itself is the target of game cheating.BlackMirror
also needs to ensure the integrity of all of these entities, as they
possibly affect the result of visibility testing. For instance, if an at-
tacker is able to change the location of a box, which is an occluder,

Entities

Self (Camera) Sensitive
Non-sensitive

Occluders Non-occluders

Trusted State Untrusted State

self visible non-visible occl- self visible occl- non-occl-

: Confidentiality + Integrity
: Integrity-only
: No protection

Figure 6: An entity hierarchy and BlackMirror’s partition-

ing to trusted and untrusted state. Filled lines denote that

entities are unconditionally declassified, and dashed lines

denote that entities are declassified depending on the result

of visibility testing.

Inputs GPU

Server
Global

State

Game
Engine

Update Encode +
Encrypt

Client

BlackMirror

Prediction
Engine

Decode +
Decrypt

Trusted

State

Untrusted

State

U
nt
ru
st
ed

D
ec
od

er

Trusted
Geometry BMTest

Geometry,
Textures
& Shaders

1 Update

2
Predict

3 Declassify

Cl
ie
nt

in
pu

ts
Cl
ie
nt

in
pu

ts
||
M
A
C

Insensitive updatesTrusted updates

Figure 7: Overall architecture of BlackMirror

the attacker would be able to evade the visibility testing, so that an
enemy entity which should not be visible, say it is behind the box,
for the attacker can be tested as visible.

6.3 Trusted State Updates

BlackMirror stores sensitive entity states within an enclave as
described in §6.2. Thus, BlackMirror should be able to update such
entity states within an enclave so as to preserve the functionality of
game plays. More specifically, there are two in-enclave updates to
trusted state: (a) updates from the server through encrypted packets
to ensure consistent game states; and (b) predictions performed by
the enclave in response to input received from the player.
Updating Trusted State with Server Messages. The server pe-
riodically transmits encrypted packets, which includes changes
to each entities including the player entity and sensitive entities.

BlackMirror

Client

Time

Update (w/ server messages)

𝑝𝑙𝑎𝑦𝑒𝑟 𝑒𝑛𝑡1 𝑒𝑛𝑡2 𝑒𝑛𝑡3
𝑥𝑠 𝑥1 𝑥2 𝑥3

Untrusted

State

𝑝𝑙𝑎𝑦𝑒𝑟 𝑒𝑛𝑡1 𝑒𝑛𝑡2 𝑒𝑛𝑡3

𝑥𝑠 → 𝑥′𝑠 𝑥1 → 𝑥′1 𝑥2 → 𝑥′2 𝑥3 → 𝑥′3
Enc

Server

𝑝𝑙𝑎𝑦𝑒𝑟 𝑒𝑛𝑡1 𝑒𝑛𝑡2 𝑒𝑛𝑡3

𝑥′𝑠 𝑥′1 𝑥′2 𝑥′3

Trusted

State

1
up

da
te

BMTest

Field-of-View𝑠

𝑒1
𝑒2

𝑒3

Visible

Volume

𝑝𝑙𝑎𝑦𝑒𝑟 𝑒𝑛𝑡1 𝑒𝑛𝑡2 𝑒𝑛𝑡3

𝑥′′𝑠 𝑥′′1 𝑥′′2 𝑥′′3

Predict Declassify

𝑝𝑙𝑎𝑦𝑒𝑟 𝑒𝑛𝑡1 𝑒𝑛𝑡2 𝑒𝑛𝑡3

𝑥′′𝑠 𝑥1 𝑥′′2 𝑥3

3
declassify

GPU

2
pr
ed
ic
t

Inputs

, timestamp

𝑥 ′′𝑠 = 𝑥𝑠 + Δ𝑡 · 𝑢↑ · 𝑣

Figure 8: BlackMirror’s workflow on update, predict and declassify operations

Upon receiving these packets, BlackMirror runs update opera-
tion (1 in Figure 8) to synchronize its trusted state with the server.
Updating the trusted state is done similarly to how the regular
(insecure) client updates its local entity states (refer §2.1).
Local PredictionusingPlayer Input. The client invokes predict
operation (2) to perform prediction-based state updates using
player input. Recall that this local prediction is vital to ensuring
that game scenes are updated more frequently (§2.1).
Calculating state updates using provided input. To perform predic-
tions, BlackMirror requires player input, e.g., from keyboard and
mouse, and the elapsed time from the last prediction to predict the
future trusted state. To be more specific, it uses the input states,
such as the fraction of time a key was pressed, and what was the
mouse direction to compute final location of the player entity. For
example, in Figure 8, the player’s origin was 𝑥 ′𝑠 after server up-
dates. The time between the last prediction and current time is
Δ𝑡 and the player pressed forward (↑) key for given time interval.
BlackMirror can compute unit vector of the forward direction
using the view angle and call it be 𝑢↑. Then the predicted origin of
the player becomes 𝑥 ′′𝑠 = 𝑥𝑠 + Δ𝑡 ·𝑢↑ · 𝑣 , where 𝑣 is the speed value
stored in the enclave.

Sensitive entities other than the player entities can be updated
as well. In particular, BlackMirror extrapolates the origin and
angle based on the elapsed time and previously received server mes-
sages. Security Checks on Untrusted Player Inputs. BlackMirror
should also address malicious inputs during the prediction, since
these inputs are received from untrusted devices. In particular, it
ensures two security property of user-provided inputs: i) if the
user-provided input matches the input sent to the server; ii) if the
user-provided input violates the movement rule dictated by the
game map. First, it latches raw inputs from the client (e.g., fraction
of key-down time) for each invocation of prediction. Before the
client forwards the input to the server, BlackMirror computes
the MAC of the latched inputs, and send it along with the inputs.
Therefore, the server-side simulation and local predictions are us-
ing the same inputs, which prevents discrepancy between the two,
which may give attackers chances of fooling the BlackMirror
to reveal more information. Second, BlackMirror checks if the
user-provided input violates the movement rule in the game. To this
end, BlackMirror performs simple collision detection in order to

Client

Untrusted
State

BlackMirror

BMTest

Geometry Rasterization

depth map

Rasterizer
Primitive
Assembly

Vertex
Processor

Trusted
State
Self

Occluders

Opponents

Trusted
Transforms

worldToClip

localToWorld

Trusted
Geometry

G
P
U

Figure 9: The workflow of BlackMirror’s visibility testing

clip the predicted position against the environment, e.g., preventing
the entities going through the walls during prediction.

6.4 Trusted Visibility Testing

In this section, we describe how BlackMirror performs trusted vis-
ibility testing in an enclave with respect to those entities. Through
trusted visibility testing, BlackMirror can securely determine
which entities are visible in the current frame, and only declassify
those entities outside the enclave, allowing them to be sent to the
GPU. This declassification mechanism allows BlackMirror to still
leverage GPU-based rendering pipelines, thereby overcoming the
severe performance limitation of software-only rendering (§9.2).

More specifically, BlackMirror implements BMTest, a stripped-
down version of graphics rendering pipeline, which is dedicated for
visibility testing for a given game scene. Instead of implementing
full-fledged rendering pipeline in software, BMTest only computes
the necessary functions for visible volume-based clipping and depth-
testing, and leaves the rest for the GPU to compute. In particular,
BMTest performs vertex processing, primitive assembly and ras-
terization in software, (refer Figure 9) Additionally, BlackMirror
can leverage SIMD instruction sets, e.g. AVX2, in the enclave to
exploit parallel computations.

In the following, we explain the overall visibility-testing mecha-
nism of BMTest including details about each step of its execution:
i) preparation of transformations and rendering data, ii) Depth map
construction with occluders, iii) Clipping by visible volume and iv)
Depth-testing against the depth map.
Preparation of Transformations and Rendering Data. Ini-
tially, BlackMirror prepares inputs that are used by BMTest, i.e.,
transformations, and the geometry. Recall that we have discussed
different coordinate systems (e.g., local space, world space, clip

space, etc.) in §2.2. Similar coordinate transformations are also per-
formed within BMTest, yet these transformations are derived from
trusted state. In particular, BlackMirror derives worldToClip
transformation from the self-player’s state, and it is used to de-
termine the visible volume of the self-player at this frame. Then,
it computes localToWorld transformations using the origin and
view angles of occluders and sensitive entities.

Other than these transformations, BMTest requires the geome-
try (e.g., size and shape) of sensitive entities to perform accurate
visibility testing. It is worth noting that since the geometry can be
huge, BlackMirror stores only a simplified model of an entity’s ge-
ometry, i.e., ignoring the details not relevant to determining shape
and size. The reason for this is that EPC memory is limited and
exhausting it can result in bad performance for enclaves [43, 44].
Furthermore, such a simplified model is commonly-used by game
applications (e.g., for collision-detection) and should therefore, be
trivial to implement for BlackMirror. We show the impact of dif-
ferent Level-of-Details (LoDs) on the accuracy of BMTest in §9.1.

After preparing the transforms and the rendering data (includ-
ing trusted geometry), BlackMirror passes them to BMTest for
performing visibility testing.
Depth Map Construction with Occluders. First, BMTest con-
structs a depth map, to accumulate depth-values of each occluder
entity. The depth map later is used for depth-testing for the enemy
entities. During this stage, BlackMirror iterates over the list of
occluders in the trusted state, and passes the associated transfor-
mations and geometry to the BMTest to update the depth map.

For each occluder, BMTest transforms it into clip space, and then
screen space to compute its depth values, and incrementally update
the depth map. In particular, resolution of the depth map (i.e. the
resolution of the screen space) is configured by the BlackMirror.
We discuss the performance and security implications of the depth
map resolution in §9.1.

In the following steps, enemy entities are handled according to
the player’s visible volume and recorded depth map values.
Clipping Sensitive Entities by Visible Volume. First, the geom-
etry pipeline of BMTest discards enemy entities outside the visible
volume. Similar to depth-map construction step, BlackMirror
passes each sensitive entity in the trusted state, and its relevant ren-
dering data to BMTest. After transforming the entity from the local
space to the clip space with the geometry pipeline, BMTest can
determine whether the enemy entity is outside the visible volume.
The entities within the visible volume are passed to the rasterization
pipeline for more precise depth testing.
DeterminingVisibility of Sensitive Entities. Finally, the raster-
ization pipeline tests each entity within the visible volume against
the depth map. In particular, entities in the clip space are mapped
to the screen space and BMTest compares the depth values of each
entity against the values in the depth map. If the depth values of
pixels in the entity are farther than the value in the depth map, it
must be hidden behind some occluder, and therefore, should not be
declassified. Lastly, BlackMirror declassifies the entities that are
considered to be visible by the BMTest to the untrusted state. In
particular, BlackMirror discloses their current trusted state to the
untrusted state via shared memory, so that they can be rendered
by the GPU.

Table 1: A list of possible attacks for a wallhack-motivated

attacker and defenses provided by BlackMirror.

Attacks BlackMirror Defenses

Accessing sensitive entities

Compromising game client Sensitive entities protected in BlackMirror (§6.2)
Malicious rendering requests Trusted visibility testing for each frame (§6.4)
Using CPU-GPU channel Only visible entities disclosed outsideInside GPU memory
Compromising visibility testing

Tampering entity geometry Trusted geometry stored in BlackMirror (§6.2)
Providing malicious input Synchronize states with server (§6.3)
Undermining server communication

Impersonate server SGX attestation using public key (§6.1)
Replay attacks Non-repeating sequences (§6.3)

7 SECURITY ANALYSIS

Table 1 provide an overview of possible attacks and we provide
further details below.

7.1 Accessing Sensitive Entities

BlackMirror protects the identified sensitive entities from all at-
tack surfaces that we have discussed in §3.2. In particular, given
that the game client (running on the attacker’s machine) can be
easily compromised, BlackMirror identifies and then stores all
sensitive game entities (and their corresponding states) in the en-
clave. Afterwards, these entities cannot be accessed by the attacker,
until explicitly disclosed by declassify operation, preceded by
BlackMirror’s trusted visibility testingwhich filters out all entities
not relevant to the current frame. As a result of filtering, the entity
states are not disclosed outside the enclave, and therefore, attacks
compromising CPU-GPU communication or the GPU memory are
useless. In §9.1, we show that BMTest is highly accurate.

7.2 Compromising Visibility Testing

An attacker may attempt to tamper with inputs (i.e., entity geome-
try data and keyboard/mouse input) provided to BlackMirror to
manipulate declassification of sensitive entities.
Tampering Entity Geometry. BlackMirror has to ensure the
integrity of the geometry parameters of its sensitive entities to
prevent manipulation of visibility testing results. For example, if
the attacker can shrink the size of a wall, the opponents behind
the wall will be classified as visible by BMTest. BlackMirror
defeats such attacks by downloading geometry data via trusted
channel with server during bootstrapping, and storing it within the
enclave during game execution. Lastly, BlackMirror seals [13]
the downloaded geometry data within the protected file system
provide by SGX [45], to avoid offline tampering.
Providing Malicious Keyboard/Mouse Inputs. The attacker
might try to manipulate BlackMirror’s predict operation using
malicious keyboard or mouse inputs from untrusted devices. As a
result, they night be able to fool BMTest.

To prevent this, BlackMirror synchronizes sensitive entity
states with the states sent to the game server through its secure
communication channel. To understand why this is sufficient, con-
sider that the attacker claims that it has moved beyond an occluder
and therefore, should be able to see enemy characters beyond the
occluder. While the attacker can lie to BlackMirror, if they do

Configuration # Keyframes # Vertices Visualization

Bounding Box 198 8

Precise 198 473

Figure 10: The changes in the number of vertices depending

on geometry’s level of details (i.e., bounding box andprecise)

not propagate this lie to the server, BlackMirror will be alerted to
this discrepancy and terminate the game. On the other hand, if the
attacker also lies to the game server, the server will update its global
game state and propagate that state to all other players. As a result,
the attacker’s character will become visible to their opponents on
their screens. Therefore, the end result of such a tampering will not
be advantageous to the attacker beyond an honest gameplay.

7.3 Undermining Server Communication

The attacker might attempt to impersonate the game server or use
replay attacks to undermine BlackMirror-server communication
channel. To prevent impersonation, BlackMirror is provided with
the server’s public key and only establishes communication chan-
nels with the proper server after mutual authentication. To prevent
replay attacks, the server should append non-repeating and increas-
ing sequences to all update messages, and therefore, BlackMirror
can verify that they are not replayed. It is worth mentioning that
BlackMirror can adopt well established techniques [46] to address
potential problems due to lossy UDP communications, for example,
out-of-order arrival or packet losses.

8 IMPLEMENTATION

We develop a prototype of our design on top of an open source
3D FPS game, Quake II. While being quite old, Quake series have
been studied by many previous research works [47–50]. Notably,
NVIDIA has recently open sourced Q2RTX [51] to showcase real-
time ray tracing, which is implemented atop Quake II. We argue
that the choice of Quake II is quite reasonable for demonstrating our
design. We choose Q2PRO [52] as our baseline, which comprises
about 100K LoC. We use Intel SGX SDK version 2.7 for creating
enclave, and software-based rendering functionalities, e.g., vertex
processing and rasterization are taken from Masked Occlusion
Culling library [53]. Additionally, we use AES128-GCM and AES-
CMAC for encryption/decryption and MAC, respectively, which
are available from SGX SDK and OpenSSL.

9 EVALUATION

Experimental Setup. We run both of BlackMirror-protected
Quake II server and client on a desktopmachine with Intel i7-8700 (6
core), 16 GB RAM, NVIDIAGeForce RTX 2080 Ti with 11GBGDDR6.
Both run Ubuntu 18.04. We intentionally restrict BlackMirror to
a single thread, expecting most CPU cores are occupied by the
rest of the game client, namely networking, handling inputs, and
rendering. [34, 54]

9.1 Accuracy and Overhead of BMTest

In this section, we evaluate how accurately and efficiently BMTest
can perform visibility testing. We analyze the accuracy of visibility
testing with a publicly available demo 1 with different configura-
tions. In particular, we experiment with i) two different Level of
Defails (LoDs); bounding boxes and precise models shown in Fig-
ure 10, and ii) different enclave depth map resolutions: 360p, 720p
and 1080p to evaluate their impact on security and performance.
Accuracy of Visibility Testing. BlackMirror can be configured
to have different geometry’s level of details (LODs), which may
affect the accuracy of declassification. In the following, we measure
the accuracy and the false negative rate of BMTest with two differ-
ent LODs, namely with bounding boxes and with precise models. As
shown in Figure 10, both bounding box and precise model have the
same 198 key frames while having 8 and 473 vertices, respectively.
Note that the precise model has 59 times more vertices enabling
the detailed rendering compared to the bounding box.

To evaluate the accuracy of BlackMirror’s visibility testing, we
replay the demo and measured (A) the total number of rendering
attempts for enemy entities in all the frames (i.e., the number of
enemy entities, including the visible and invisible ones), (B) the
number of visible entities that passes BMTest with the bounding
box and precise model, respectively, (C) the number of entities
that are not declassified by BMTest, though it should have, and
(D) the true number of visible entities (the ground truth). Note
that to measure D, we leverage the occlusion query extension [55],
which allows a developers to count that number of triangles that
are drawn without being occluded, thus providing the true number
of entities that are rendered to the final scene. The accuracy and
the false negative rate of visibility testing is defined to be 1 − 𝐷−𝐵

𝐴

and 𝐶
𝐴
, respectively.

The results are shown in Figure 11. Overall the accuracy of
BlackMirror’s visibility testing ranges from 0.973 to 0.986, impli-
cating that BlackMirror effectively filters out non-visible entities.
On the other hand, there exist few false negatives, due to low reso-
lution of enclave depth map, and different algorithms being used
by CPU and GPU. The false negative rate turns out to be small, and
we expect it can be further reduced by combining techniques such
as path-tracing, i.e., casting a ray from the camera to the entity,
nevertheless we leave specific implementations to be future works.
Performance Impact of Visibility Testing. The performance
of BlackMirror’s visibility testing depends on: 1) what is the
resolution of the depth map? and 2) how detailed the provided
geometry is?

Figure 12 shows the performance overhead of the depth map
preparation. Depending on the resolution, for each frame it takes
from 0.36 millisecond (for 360p resolution) to 0.50 millisecond (for
1080p resolution). Since most games require 60fps, the time gap
between frames is about 16 millisecond. In this regard, the overhead
of depth map construction (i.e., 0.36 to 0.50 millisecond) only takes
about 0.02% to 0.03%, we believe such overhead should be acceptable
to meet gaming requirements for user’s experience.

Figure 13 shows a comparison of the depth testing performance
while varying i) the number of sensitive entities to test and ii)
1http://acmectf.com/downloads/demos-tricks/_unsorted/challenge-tv/ffadm1.dm2.
zip

http://acmectf.com/downloads/demos-tricks/_unsorted/challenge-tv/ffadm1.dm2.zip
http://acmectf.com/downloads/demos-tricks/_unsorted/challenge-tv/ffadm1.dm2.zip

Enclave Total # Total # # of Visible # of Visible # of False # of False Ground Truth
Depth Map of Frames of Entities Entities Negative Negative # of Visible
Resolution Entities w/ Bbox (B) w/ Precise (B) w/ Bbox (C) w/ Precise (C) Entities

(𝐴) (1 − 𝐷−𝐵
𝐴

) (1 − 𝐷−𝐵
𝐴

) (𝐶
𝐴
) (𝐶

𝐴
) (𝐷)

360p 299,832 708,907 182,944 (97.3%) 176,686 (98.2%) 13 (0.0018%) 262 (0.037%) 163,834
720p 295,044 693,976 176,832 (97.6%) 170,606 (98.5%) 12 (0.0017%) 216 (0.030%) 160,009
1080p 283,293 658,824 166,007 (97.8%) 160,560 (98.6%) 10 (0.0015%) 185 (0.026%) 151,185

Figure 11: Accuracy and false negative rate of BlackMirror’s visibility testing

Figure 12: The time taken to prepare a depthmap (per frame)

while varying its resolution

testing depth resolution. Overall, for all different cases we believe
the visibility testing time is negligible (all cases are less than 0.50
millisecond), suggesting very little impact on user experience. Fur-
thermore, the precise geometry takes more time than the bounding
box geometry, as expected since it has more vertices to check. Sim-
ilarly, as the number of sensitive entities increases, the visibility
testing takes more time because it has to enumerate all of them.

Figure 13: A comparison of the depth testing performance

while varying i) the number of sensitive entities to test and

ii) testing resolution. The time ismeasuredwith a per-frame

depth testing time.

9.2 End-to-End Performance Evaluation

To understand end-to-end performance impact of BlackMirror,
we run our fully-functional BlackMirror-protected Quake II with
two participants. In particular, we evaluate if client and server over-
head are acceptable to determine if BlackMirror has low impact
on client experience and is scalable for the server to implement.
Client-side Overhead. We partition the client application into
three parts: update, predict and render, and measure average execu-
tion time of these periods, with three different settings. In particular,
the client updates the game states with server messages during the
update period, and it predicts the player state using local inputs dur-
ing the predict period. Then, for the render period, the client render
the scene on the GPU or with the software renderer. Note that for
BlackMirror, update and predict take places in the enclave and
it also performs trusted visibility testing in advance to rendering
on the GPU, which are the source of the overhead presented by
BlackMirror. For the baseline, we run unmodified game client,
which runs non-enclave update and prediction, and renders the

Figure 14: A comparison of the overhead to run a frame. (a)

Baseline runs updates and predictions without an enclave,

and renders the scene on the GPU. (b) BlackMirror runs

updates and predictions within the enclave, and performs

trusted visibility testing before rendering the scene on the

GPU. (c) Software renderer is identical to the baseline, except

that it renders the scene with a software renderer.

scene on the GPU (a). BlackMirror runs update and prediction
within the enclave, and performs trusted visibility testing before ren-
dering the scene on the GPU (b). Lastly, we run non-enclave client
with a software renderer, SwiftShader [37] (utilizing 12 threads), to
give the sense of performance overhead incurred by adopting one
of the straw man designs discussed in §5 (c). (See D2)

The result is shown on Figure 14, and overall, the evaluation
result show that that BlackMirror adds in total 0.57 ms overhead
per each frame on average. Therefore, if the native game operates
at 60 frames-per-second, i.e., takes 16ms to render each scene (com-
mon setting for modern games), BlackMirror demonstrates 58-59
frames-per-second on average, which is negligible and acceptable.
The performance overhead of BlackMirror is mainly caused by
running updates and predictions within the enclave, and perform-
ing the trusted visibility testing before rendering on the GPU. On
the other hand, software-rendering with SwiftShader [37] exhibits
34× slowdown than BlackMirror, even when running without
enclave and utilizing 12 threads.
Server-side Overhead. Since BlackMirror-based Quake II re-
quires secure channel to communicate, server performs encryption
over all packets sent to and received from clients, unlike native
Quake II. Figure 15 measures the time taken to encrypt a packet
while varying the size of packets. As shown in the figure, the en-
cryption overhead is always less than 0.23 ms (0.06 ms on average),
which should not interfere the gaming experience for 60 fps games.

10 DISCUSSIONS

Applicability to a broader range of games. Although we pro-
totype BlackMirror on Quake II, we expect that our approaches
be applicable to a broader range of games for two main reasons: (i)
its interface is general enough to be adopted by most multiplayer

Figure 15: The overhead of packet encryption at server

shooter games, and (ii) modern game engines are equipped with
features, which can be retrofitted to realize our design.

First, we investigate the client applications of latest open-source
3D multiplayer shooter games, Xonotic [56] and Red Eclipse [57]
to show that they also share the same game architecture (refer
to §2) with Quake II. In particular, within the main processing loop,
all of them performs the following operations: (a) updating the
game state with server messages, (b) predict the player state with
inputs (optionally run a physics engine), and (c) render the scene
with updated view values. From the observation, we conclude the
interfaces of BlackMirror can be smoothly integrated to these
games without intrusive changes to their architecture. Furthermore,
we expect closed-source games also follow the same architectural
footprint; therefore, BlackMirror can be applied to them, as well.

Second, we find that modern game engines including Unreal
Engine already provide in-CPU visibility testing features [58, 59],
one of the core requirements for BlackMirror, therefore the game
engine developers can easily adopt our approaches. However, note
that their goal for testing visibility on CPU is to improve the per-
formance rather than preventing wallhacks.
Advanced Rendering Techniques. Although we successfully
demonstrate a prototype of BlackMirror using nontrivial game,
it may require further efforts to be integrated to games with more
complex rendering pipelines. Firstly, modern game engines often
transform the shape of entities on GPU, e.g., geometry and tessella-
tion shaders. In order to apply BlackMirror to games, the game
developers have to use conservative trusted geometry, so that it can
tolerate possible updates to the shapes on the GPU. Secondly, an
entity behind the wall may affects the scene with complex graphics
engines. For example, the shadow of a hidden entity may appear
to the scene, or it may be a light source, so that the neighboring
pixels are enlightened. We can modify BMTest take account of
these effects when making decisions on the visibility, but we leave
specific implementations as future works.

11 LIMITATIONS

Aimbots. Aimbots automatically generates inputs (e.g., moving
mouses) to move cursors on the enemy at will, so that the attacker
can make more accurate shots. BlackMirror does not prevent
these attacks since it does not protect visible enemy states that
can be used to calculate required fake inputs, and without trusted
input devices [15, 16], it is hard to distinguish between artificial
inputs from the genuine user inputs. That said, current version
of BlackMirror will not obsolete the entire existing anti-cheat
techniques due to lacking support for other types of cheats, namely
the aimbots. Nevertheless, we believe BlackMirror is an important
step towards bringing TEE technologies to cheat prevention in
online game, and therefore eliminating over-privileged current
anti-cheat software.

Noticeability vs. visibility. In some game, the vision of a player
is hindered by environmental objects (e.g., bush or foliage) and par-
ticle effects (e.g., explosion), which partly covers sensitive entities,
or has similar colors with them. Attackers may attempt to nullify
these features by leaking their position (as far as the entities are
only partly covered) or modifying the textures so that the entities
can be easily noticed. It is hard for BlackMirror to prevent these
attacks, since the state of the entities would be declassified, unless
the entire object is hidden behind the wall, and due to lack of trusted
memory region on the GPU (for tamper-evident textures).

12 RELATEDWORKS

OpenConflict [34] invents an multi-party computation (MPC) pro-
tocol for preventing maphacks in 2D RTS games. In OpenConflict,
each client computes its current visible area, and it is obliviously
sent as a query to its opponents who return a list of their units that
are overlapping with requested visible area. However, such MPC
schemes are not suitable for 3D games, where testing visibility is
much more complex. In particular, in 3D world, the visible area
is typically larger than the 2D world (imagine visible area span-
ning to almost infinity in 3D games, but cut by a certain distance
in 2D games), thus the query should be very large. Additionally,
the view is obstructed by various objects, which further compli-
cates computing visible volume itself in advance to MPC protocol.
Therefore, such an MPC protocol will likely be inefficient in 3D
games. AVM [60] provides accountability to the execution of vir-
tual machine by tamper-evident logging and deterministic replay.
Watchmen [49] uses distributed proxies for cheat prevention in
multi-player games. Watchmen focuses more on distributed proxy
architecture, instead of specific visibility testing mechanisms, e.g.,
how to precisely compute a vision set. Bauman et al. [61] show-
cased how to leverage Intel SGX technology for protecting games.
However their work mainly focus on DRM, while leaving solutions
for cheat prevention as a future work.

13 CONCLUSION

Online game cheating, particularly wallhacks, is a critical issue
for a competitive game, and anti-cheat solutions by far are funda-
mentally flawed because it is deployed on a machine where the
attacker has absolute control. This paper presented BlackMirror,
a new game design with a trusted execution environment, Intel
SGX. It leverages strong data isolation guarantees provided by SGX
to prevent wallhacks. The implementation and evaluation with
BlackMirror-protected Quake II demonstrate that BlackMirror
can enable fully functional and secure games while meeting user
experience requirements on games.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Yan Shoshi-
taishvili, for the insightful and thoughtful feedback which guided
the final version of this paper. This work was partly supported by
National Research Foundation (NRF) of Korea grant funded by the
Korean government MSIT (NRF-2019R1C1C1006095). The Institute
of Engineering Research at Seoul National University provided
research facilities for this work.

REFERENCES

[1] Global gamesmarket report. https://newzoo.com/products/reports/global-games-
market-report/.

[2] Report: Cheating is becoming a big problem in online gaming.
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-
becoming-a-big-problem-in-online-gaming.

[3] Battleye: The anti-cheat gold standard. https://www.battleye.com. Accessed:
2020-01-03.

[4] Valve anti-cheat system (vac). https://support.steampowered.com/kb/7849-
RADZ-6869/#whatisvac. Accessed: 2020-01-03.

[5] Easy anti-cheat. https://www.easy.ac/en-us/. Accessed: 2020-01-03.
[6] Joel Noguera. Unveiling the underground world of anti-cheats. Recon Montreal

2019, 2019.
[7] Cheat engine. https://www.cheatengine.org/. Accessed: 2020-01-02.
[8] Joel Noguera. Creating your own wallhack. https://niemand.com.ar/2019/01/13/

creating-your-own-wallhack/, January 2019.
[9] Carl Schou. Hooking the graphics kernel subsystem. https://secret.club/2019/10/

18/kernel_gdi_hook.html, October 2019.
[10] Peter Andreasen. Deep dive into networking for unity’s fps sample game. Unite

LA, 2018.
[11] Quake 2 gpl release. https://github.com/id-Software/Quake-2.
[12] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham

Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions
and software model for isolated execution. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy, HASP
’13, pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[13] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative
technology for cpu based attestation and sealing.

[14] Samuel Weiser and Mario Werner. Sgxio: Generic trusted i/o path for intel sgx.
In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17, 2017.

[15] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke, F. Fraser,
G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi, V. Subbiah, M. Backes, G. Pellegrino,
and D. Boneh. Fidelius: Protecting user secrets from compromised browsers. In
Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[16] Aritra Dhar, Enis Ulqinaku, Kari Kostiainen, and Srdjan Capkun. Protection
Root-of-trust for io in compromised platforms. In Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2020.

[17] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution
environments on gpus. In Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Carlsbad, CA, October 2018.

[18] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
Heterogeneous isolated execution for commodity gpus. In Proceedings of the
24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Providence, RI, April 2019.

[19] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In 2015 IEEE Symposium on Security
and Privacy, San Jose, CA, May 2015.

[20] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In Proceedings of the 26th USENIX Security Sym-
posium (Security), Vancouver, Canada, August 2017.

[21] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT 17),
Vancouver, BC, August 2017. USENIX Association.

[22] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution, SysTEX’17, 2017.

[23] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Symposium (Security),
Baltomore, MD, August 2018.

[24] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In
Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[25] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.
In Proceedings of the 27th USENIX Security Symposium (Security), Baltomore, MD,
August 2018.

[26] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in
darkness: Return-oriented programming against secure enclaves. In Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver, Canada, August
2017.

[27] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. The guard’s dilemma: Efficient code-reuse attacks against intel SGX. In
Proceedings of the 27th USENIX Security Symposium (Security), Baltomore, MD,
August 2018.

[28] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. Sgx-shield: Enabling address space layout randomization
for sgx programs. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, February 2017.

[29] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds: Memory safety for
shielded execution. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17. ACM, 2017.

[30] Nicilas Guigo and Joel St. John. Next level cheating and leveling up mitigations.
Black Hat Europe 2014, 2014.

[31] Osiris. https://github.com/danielkrupinski/Osiris.
[32] Charlatano. https://github.com/Jire/Charlatano.
[33] Onebytewallhack. https://github.com/danielkrupinski/OneByteWallhack.
[34] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh. Openconflict: Preventing

real time map hacks in online games. In Proceedings of the 32nd IEEE Symposium
on Security and Privacy (Oakland), Oakland, CA, May 2011.

[35] imgui. https://github.com/ocornut/imgui.
[36] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-sgx: A practical library

OS for unmodified applications on SGX. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC), Santa Clara, CA, July 2017.

[37] Swiftshader. https://github.com/google/swiftshader.
[38] Xigncode3. https://www.wellbia.com/home/en/pages/xigncode3/. Accessed:

2020-01-03.
[39] Riot’s approach to anti-cheat. https://technology.riotgames.com/news/riots-

approach-anti-cheat. Accessed: 2019-12-28.
[40] Carl Schou. Battleye anticheat: analysis and mitigation. https://vmcall.github.io/

reversal/2019/02/10/battleye-anticheat.html/, February 2019.
[41] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin

Xia, and Shoumeng Yan. Occlum: Secure and efficient multitasking inside a single
enclave of intel sgx. In Proceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Lausanne, Switzeland, April 2020.

[42] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. Opera: Open remote attes-
tation for intel’s secure enclave. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS), London, UK, November 2018.

[43] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung
Lee. OBLIVIATE: A data oblivious filesystem for intel SGX. In Proceedings of the
2018 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2018.

[44] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos:
Exitless os services for sgx enclaves. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys), Belgrade, Serbia, April 2017.

[45] Surenthar Selvaraj. Overview of protected file system library using software
guard extensions, 2016.

[46] Timothy Ford. Overwatch gameplay architecture and netcode. GDC 2017, 2017.
[47] Daniel Lupei, Bogdan Simion, Don Pinto, Matthew Misler, Mihai Burcea, William

Krick, and Cristiana Amza. Transactional memory support for scalable and trans-
parent parallelization of multiplayer games. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys), Paris, France, April 2010.

[48] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian Cristal, Eduard
Ayguade, Tim Harris, and Mateo Valero. Quaketm: parallelizing a complex
sequential application using transactional memory. In Proceedings of the 23rd
International Conference on Supercomputing (ICS), Yorktown Heights, NY, June
2009.

[49] A. Yahyavi, K. Huguenin, J. Gascon-Samson, J. Kienzle, and B. Kemme. Watchmen:
Scalable cheat-resistant support for distributed multi-player online games. In
Proceedings of the 33st International Conference on Distributed Computing Systems
(ICDCS), 2013.

[50] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard
Ayguadé, Tim Harris, and Mateo Valero. Atomic quake: using transactional
memory in an interactive multiplayer game server. In Proceedings of the 14th
ACM Symposium on Principles and Practice of Parallel Programming (PPOPP),
Releigh, USA, February 2009.

[51] Q2RTX. https://github.com/NVIDIA/Q2RTX.
[52] Q2PRO. https://github.com/skullernet/q2pro.
[53] Masked software occlusion culling. https://github.com/gametechdev/

maskedocclusionculling.
[54] J. Hasselgren, M. Andersson, and T. Akenine-Möller. Masked software occlusion

culling. In Proceedings of High Performance Graphics, HPG ’16, 2016.

https://newzoo.com/products/reports/global-games-market-report/
https://newzoo.com/products/reports/global-games-market-report/
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming
https://www.battleye.com
https://support.steampowered.com/kb/7849-RADZ-6869/#whatisvac
https://support.steampowered.com/kb/7849-RADZ-6869/#whatisvac
https://www.easy.ac/en-us/
https://www.cheatengine.org/
https://niemand.com.ar/2019/01/13/creating-your-own-wallhack/
https://niemand.com.ar/2019/01/13/creating-your-own-wallhack/
https://secret.club/2019/10/18/kernel_gdi_hook.html
https://secret.club/2019/10/18/kernel_gdi_hook.html
https://github.com/id-Software/Quake-2
https://github.com/danielkrupinski/Osiris
https://github.com/Jire/Charlatano
https://github.com/danielkrupinski/OneByteWallhack
https://github.com/ocornut/imgui
https://github.com/google/swiftshader
https://www.wellbia.com/home/en/pages/xigncode3/
https://technology.riotgames.com/news/riots-approach-anti-cheat
https://technology.riotgames.com/news/riots-approach-anti-cheat
https://vmcall.github.io/reversal/2019/02/10/battleye-anticheat.html/
https://vmcall.github.io/reversal/2019/02/10/battleye-anticheat.html/
https://github.com/NVIDIA/Q2RTX
https://github.com/skullernet/q2pro
https://github.com/gametechdev/maskedocclusionculling
https://github.com/gametechdev/maskedocclusionculling

[55] ARB_occlusion_query. https://www.khronos.org/registry/OpenGL/extensions/
ARB/ARB_occlusion_query.txt.

[56] Xonotic. https://github.com/xonotic/xonotic.
[57] Red eclipse 2. https://github.com/redeclipse/base.
[58] Visibilty and occlusion culling. https://docs.unrealengine.com/en-US/Engine/

Rendering/VisibilityCulling/index.html.
[59] Michal Valient. Practical occlusion culling in killzone 3: Will vale — second

intention limited — contract r&d for guerrilla bv. In ACM SIGGRAPH 2011 Talks,

SIGGRAPH ’11, 2011.
[60] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel.

Accountable virtual machines. In Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Vancouver, Canada,
October 2010.

[61] Erick Bauman and Zhiqiang Lin. A case for protecting computer games with
sgx. In Proceedings of the 1st Workshop on System Software for Trusted Execution,
SysTEX ’16, 2016.

https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_occlusion_query.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_occlusion_query.txt
https://github.com/xonotic/xonotic
https://github.com/redeclipse/base
https://docs.unrealengine.com/en-US/Engine/Rendering/VisibilityCulling/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/VisibilityCulling/index.html

	Abstract
	1 Introduction
	2 Background
	2.1 Multiplayer FPS Game Architecture
	2.2 Game Rendering Pipeline
	2.3 Intel Software Guard eXtensions (SGX)

	3 Threat Model and Attack Summary
	3.1 Threat Model
	3.2 Wallhack Cheats

	4 Limitations of Current Anti-Cheat
	5 Wallhack Prevention using TEEs
	6 Design of BlackMirror
	6.1 Bootstrapping
	6.2 Protecting Entities for Trusted Visibility Testing
	6.3 Trusted State Updates
	6.4 Trusted Visibility Testing

	7 Security Analysis
	7.1 Accessing Sensitive Entities
	7.2 Compromising Visibility Testing
	7.3 Undermining Server Communication

	8 Implementation
	9 Evaluation
	9.1 Accuracy and Overhead of BMTest
	9.2 End-to-End Performance Evaluation

	10 Discussions
	11 Limitations
	12 Related Works
	13 Conclusion
	Acknowledgments
	References

