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ABSTRACT

Intel SGX is a security solution promising strong and practical se-
curity guarantees for trusted computing. However, recent reports
demonstrated that such security guarantees of SGX are broken
due to access pattern based side-channel attacks, including page
fault, cache, branch prediction, and speculative execution. In order
to stop these side-channel attackers, Oblivious RAM (ORAM) has
gained strong attention from the security community as it provides
cryptographically proven protection against access pattern based
side-channels. While several proposed systems have successfully
applied ORAM to thwart side-channels, those are severely limited in
performance and its scalability due to notorious performance issues
of ORAM. This paper presents TrustOre, addressing these issues
that arise when using ORAM with Intel SGX. TrustOre leverages
an external device, FPGA, to implement a trusted storage service
within a completed isolated environment secure from side-channel
attacks. TrustOre tackles several challenges in achieving such a
goal: extending trust from SGX to FPGA without imposing archi-
tectural changes, providing a verifiably-secure connection between
SGX applications and FPGA, and seamlessly supporting various
access operations from SGX applications to FPGA.We implemented
TrustOre on the commodity Intel Hybrid CPU-FPGA architecture.
Then we evaluated with three state-of-the-art ORAM-based SGX
applications, ZeroTrace, Obliviate, and Obfuscuro, as well as an end-
to-end key-value store application. According to our evaluation,
TrustOre-based applications outperforms ORAM-based original
applications ranging from 10× to 43×, while also showing far bet-
ter scalability than ORAM-based ones. We emphasize that since
TrustOre can be deployed as a simple plug-in to SGX machine’s
PCIe slot, it is readily used to thwart side-channel attacks in SGX,
arguably one of the most cryptic and critical security holes today.
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1 INTRODUCTION

Intel Software Guard eXtension (SGX) is a processor extension that
offers strong and practical security guarantees by excluding privi-
leged system software and other unprivileged software from the
trusted computing base (TCB). This processor extension provides
software applications with shielded execution environments, called
an enclave, where security-sensitive code and data can safely run in
an environment isolated from the rest of systems. Using SGX, even
privileged software components such as OSes and hypervisors are
not allowed to directly access the enclave’s memory.

However, recent reports have demonstrated that Intel SGX is
vulnerable to various memory-based side-channel attacks (e.g. page-
fault-based attacks [82], cache-based attacks [11], branch predic-
tion [42], ForeShadow [73], RIDL [74], and Fallout [49]). We note
these side-channel attacks pose real threats as demonstrated by
recent studies — using these attacks, it has been shown that adver-
saries can completely nullify the confidentiality guarantee of Intel
SGX through leaking sensitive information from enclaves.

In order to prevent these side-channel attacks against SGX, re-
cent studies [3, 4, 60] have proposed using Oblivious RAM (ORAM)
to protect access patterns leakedwhile accessingmemory. Under the
concept of ORAM [23], which provides cryptographically proven
security resistant against access pattern based attacks, each data
object is appended with multiple dummy objects and continuously
shuffled after each access. Using ORAM, several protection systems
have been proposed. ZeroTrace [60] ensures secure accesses to data
structures, Obliviate [3] provides secure file systems, and Obfus-
curo [4] guarantees black-box based secure program execution.
While these applications have further security benefits and protec-
tion scopes, the key common feature is that they are all relying on
ORAM protocols to thwart side-channels within enclaves.

However, ORAM is notorious for its slow performance and scala-
bility issues, severely hindering its adoption in real-world scenarios.
The ORAM protocol requires orders of magnitude larger memory
bandwidth than a normal memory access, as it has to access an

https://doi.org/10.1145/3372297.3417265
https://doi.org/10.1145/3372297.3417265


entire tree path for each memory access — it approximately requires
O(LoдN ) memory accesses per access, where N is proportional to
the size of protected data. Based on the experimental evaluations
in above-mentioned papers, the overhead of ORAM is at minimum
two degrees over native enclave execution. More importantly, all
these papers point to scalability issues of ORAM— as the size of pro-
tected data becomes larger, the performance exponentially slows
down, a fact we experimentally verify in our evaluation as well.

This paper proposes TrustOre, a system that addresses perfor-
mance and scalability issues that arise while using ORAMwith Intel
SGX. The main idea behind TrustOre is to leverage an external
device, i.e., an FPGA, to implement a trusted storage service for
enclaves. This is based on the observation that the root cause of
memory-based side-channel issues in enclaves is because memory-
related units (such as caches, page tables and branch prediction
units) are designed to be shared with untrusted software. Therefore,
we design the trusted storage on an isolated FPGA environment,
having its own memory-related units isolated from other entities
and as a result avoiding memory-based side-channels by design.

In order to adopt FPGAs with Intel SGX, TrustOre has to tackle
following challenges: (a) extending trust from enclaves to FPGA
without imposing architectural changes to involved components;
(b) providing a verifiably-secure connection from enclaves to FPGA
without imposing massive overheads; and (c) seamlessly support-
ing various access operations from enclaves to the FPGA without
involving huge porting efforts. To elaborate, TrustOre relies on
an external FPGA device, but the FPGA is not a trusted component
in the Intel SGX architecture and therefore we need an additional
mechanism to extend trust to it. Moreover, an FPGA architecture
itself does not provide a mechanism to affirm its authenticity to
others. To address this challenge, TrustOre designs a new attesta-
tion mechanism for the CPU-FPGA architecture such that enclaves
can safely verify the authenticity of FPGA instance.

We highlight that TrustOre’s attestation does not impose any
hardware/architectural change, and thus it can be used with
commodity-off-the-shelf Intel SGX hardware and FPGA devices.
This is a notable difference from previous solutions, which require
hardware/architectural changes, rendering their solutions limited
to custom architectures and thus incurring fabrication challenges or
high manufacturing costs. For example, hardware-assisted ORAM
designs [21, 22, 43, 45] require adding special hardware or signifi-
cant extra protections (for ORAM controllers in particular) within
the host CPU, as shown by recent report [4]. As another example,
previous works encrypting the communication channel between
CPU and memory [2, 8, 63, 76] either require special hardware
components in memory (i.e., processing-in-memory) or design a
custom memory board. On the contrary, TrustOre is built on an
Intel hybrid CPU-FPGA architecture for which its practical aspect
is already evidenced in several places — for instance, Amazon EC2
already provides FPGA-builtin servers in Amazon Web Services [5].

Furthermore, TrustOre has to efficiently connect an enclave to
the FPGA with security assurance. Since TrustOre outsources a
memory access to the external FPGA device, the performance of
an SGX application can be blocked by the extra communication
delay between CPU and FPGA. More importantly, TrustOre has

to assume that an attacker would be able to eavesdrop this com-
munication which involves untrusted system components as well
as untrusted memory. As such, in consideration of the man-in-the-
middle attack model, TrustOre carefully designs its communica-
tion channel while ensuring following features: (a) all MMIO/DMA
addresses remain constant and (b) all data written to these addresses
is encrypted using a shared key established between the enclave
and the FPGA module.

Lastly, TrustOre has to seamlessly support various memory
allocation/deallocation as well as access operations from enclaves
without involving huge porting efforts. To this end, TrustOre
takes a key-value store model in designing its FPGA on-chip mem-
ory storage, and provides minimal and simple interfaces for en-
claves to utilize TrustOre’s key-value store. Since the key-value
store model can be easily used to represent many different data
resources and objects, TrustOre’s storage model can easily fit the
needs of different enclave applications. As a concrete case-study, we
first implemented TrustOre based on a commodity hybrid CPU-
FPGA architecture. Then, we develop extra APIs to fairly evaluate
existing schemes such as ZeroTrace, Obliviate, Obfuscuro, while
replacing their ORAM operations with TrustOre’s trusted storage
service. We also applied TrustOre for an end-to-end key-value
store, ShieldStore [39].

According to our evaluation,TrustOre-based applications (which
replaced ORAM with TrustOre) significantly outperforms ORAM-
based original applications for all cases.TrustOre-based ZeroTrace
accesses data structures with various block sizes 49× faster than
ORAM-based ZeroTrace (i.e., an original ZeroTrace) on average.
TrustOre-based Obliviate accesses the files of size 1GB about 10×
faster compared to ORAM-based Obliviate. TrustOre-based Obfus-
curo is faster than ORAM-based Obfuscuro, ranging from 2× to 43×.
TrustOre-based ShieldStore is faster than ORAM-based Shield-
Store about 188×. Particularly focusing on scalability , TrustOre-
based applications showed far better scalability compared to its
original ORAM version. While ORAM-based applications expo-
nentially slow down as increasing the data size, TrustOre-based
applications slow down smoothly or maintain the constant through-
put irrespective to the data size (more details are in §7).

Given the trusted memory storage provided TrustOre, vari-
ous interesting applications for an enclave can be built with side-
channel security assurance. We believe TrustOre is an attractive
solution particularly because it is ready-to-deploy and easy-to-
deploy — by simply plugging-in the FPGA card to the available
PCI-E slot, TrustOre can start serving the trusted memory storage
at the gigabytes scale1 without any hardware/architecture changes.

In summary, this paper makes the following main contributions:
• Design: Extending Trust to FPGA. To the best of our knowl-
edge, TrustOre is the first system extending the trust of In-
tel SGX to FPGA. Unlike other related work [75] extending
trust to an external device, TrustOre does not impose archi-
tectural/hardware changes, and is therefore readily deployable
on commodity-off-the-shelf Intel SGX machines.

• Design: Trusted Storage on FPGA. TrustOre designs its
trusted storage on FPGA, which tackles unique design require-
ments. TrustOre provides the secure connection between an

1Intel currently provides FPGA with 16GB packed DRAM in Intel Stratix 10 MX and
Xilinx does 8GB in Virtex UltraScale+ HBM VCU128-ES1.



SGX application and the FPGA, and seamlessly supports the
requirements of various enclave applications by maintaining a
key-value store model on the FPGAmemory, achieving efficient
and scalable performance.

• Case Study: Practical End-to-End System.We implemented
TrustOre on a commodity Intel hybrid CPU-FPGA architec-
ture. Then, in order to stake our claim as a faster, and more scal-
able storage system than ORAM for SGX environments, we used
TrustOre to re-implement three ORAM-based protection sys-
tems, including ZeroTrace [60], Obliviate [3] and Obfuscuro [4],
and compared performance aspects between ORAM-based and
TrustOre-based ones. Our results indicate that TrustOre-
based schemes outperforms ORAM-based schemes by almost
two degrees, demonstrating its scalability for real-world work-
loads.

2 BACKGROUND

2.1 Intel SGX

Intel SGX [48] is an extension to the x86 Instruction Set Architecture
(ISA) available to processors starting from the Skylake architecture.
These instructions allow a user-level process to allocate a trusted
memory region called an enclave, which is only accessible to the
enclave itself, and not to other user or system components, e.g.,
other processes, OS, hypervisor and BIOS. This memory region is
allocated from a reserved memory on the DRAM called the Enclave
Page Cache (EPC), which is initialized at the booting time. The EPC
is currently limited to 128 MB, but this memory limitation can be
alleviated by using page swap-in/out mechanism.
Side-channel Issues. Reports [72, 82] have shown that attackers
can observe page-granular memory interactions being performed
by SGX application using page faults or stealthily observing the
access/dirty bit within enclave page tables. Using this information,
researchers have demonstrated how to leak various information
such as inferring rendered JPEG images and spell-checked words
from enclaves. Furthermore, researchers [11, 61] have shown how to
leak entire cryptographic keys from enclaves runningmbedTLS [44]
through prime+probe attacks [52] on various caches (from L1 to
LLC) which are shared by enclave and non-enclave entities. Finally,
branch prediction [19, 42] allows privileged entities to observe
the branching history of the enclave thereby providing them fine-
grained insights into the control-flow allowing for similar attacks
to the ones mentioned above. More recently, various speculative
execution attacks [13, 73] have been shown to affect SGX enclaves.

2.2 FPGA

A Field-Programmable Gate Array (FPGA) is a specially designed
re-configurable integrated circuit. At a high-level, FPGAs consist
of two components, the infra primitive and fabric. The infra prim-
itive is a set of non-configurable hardware circuits. The fabric is
a configurable circuit which is initialized by the infra primitive
to realize a logic designed by the developer. With this two-staged
circuit design, FPGAs offer developers a design flexibility as well as
various security guarantees, as explained in the coming paragraphs.
Bitstream Preparation. The core of an FPGA module is a bit-
stream, which is the logic intended by the developer. This bitstream
is compiled using the FPGA manufacturer’s compiler-tools and is
appended with a manufacturer-specific bootloader to form a raw
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Figure 1: A generic secure boot architecture of FPGA

boot image. To protect the the FPGA design from copying or re-
verse engineering, the boot image is encrypted. Authentication
additionally provides assurance that the boot image is genuine
and created by an authorized developer, i.e., authentication verifies
both data integrity and authenticity of the boot image. For such
encryption and signing, it is required to generate and securely man-
age two kinds of keys: an RSA public/private keys for signing (i.e.,
kbitstr
Pub and kbitstr

Priv ) and an AES encryption key (i.e., kbitstr
AES ). To be more

specific, each component of the boot image (i.e., boot loader and
bitstream) is encrypted using kbitstr

AES and then signed using kbitstr
Priv , in

turn (bootloaderS and bitstreamS ). So, kbitstr
AES and kbitstr

Priv should be
protected from any others except an authorized user. Since FPGAs
have one-time programmable and tamper-resistant storage for the
keys as will be explained later, we assume the FPGA manufacturer
bakes the key during manufacturing. Once all of the above steps are
complete, bootloaderS and bitstreamS are now ready to be released.
Bitstream Loading. The on-chip FPGA infra primitive loads
signed boot image using a secure boot process. The implementation
details of this process depend on FPGA manufacturers, such as
Secure Device Manager (SDM) [69] of Intel and Processing System
(PS) of Xilinx [59]. Figure 1 provides a general outlook on the secure
boot process in a hardware-agnostic manner. The boot ROM in the
infra primitive loads the signed boot image from the host system.
Then, it authenticates each component of the image using the RSA
public key (i.e.,kbitstr

Pub ) ( 1 ), and decrypts correctly authenticated ones
using the AES key (i.e.,kbitstr

AES ) ( 2 , 3 ). After this, the bootloader is
launched in the infra primitive ( 4 ). Lastly, the bootloader loads the
bitstream to the FPGA fabric ( 5 ), and hands over the execution to
the loaded bitstream.
Secure Boot Assumptions. FPGA manufacturers support a se-
cure boot process of bitstreams to ensure authenticity and confiden-
tiality. This security feature is designed to hold under the following
assumption on key management and FPGA configuration. First,
FPGA manufacturers (such as Intel and Xilinx) are assumed to be
trusted and responsible to securely generate cryptographic keys
(i.e., kbitstr

Pub and kbitstr
Priv for RSA authentication and kbitstr

AES for AES en-
cryption) such that an adversary cannot obtain security sensitive
keys including kbitstr

Priv and kbitstr
AES . kbitstr

Pub and kbitstr
AES can be programmed

to either one-time programmable eFUSE or multiple re-writable
battery-backed RAM, which can flexibly facilitate the secure key
setup. Second, all security sensitive code and data (including boot
ROM, AES decryptor, andkbitstr

Pub andkbitstr
AES ) are assumed to be tamper-

resistant by their design. The boot ROM functions as a root-of-trust



for ensuring confidentiality and authenticity of bitstream and there-
fore should not be tampered-with by system components.

It is worth to note that whereas Intel SGX supports remote attes-
tation of an enclave application, current FPGA architectures do not
employ such remote attestation feature. FPGA’s secure boot only
guarantees the authenticity and confidentiality of the bitstream
during boot time. The reason why FPGAs do not have the remote
attestation feature is arguably related to the fact that FPGAs are
designed as a general purpose hardware components, e.g., proto-
typing new hardware logics or facilitating highly parallelizable
computation. This is different from Intel SGX, which is designed as
a security enhancing feature for trusted remote computation.
Connection with Host CPU. After the booting, the FPGA begins
operation as programmed in the bitstream. When the bitstream
is running, the FPGA is connected to the host CPU through the
IO bus (QPI [31] or PCIe [80], which are often used in CPU-FPGA
hybrid architectures). The FPGA device driver provided by the
manufacturer extends host CPU memory space to include FPGA
memory using memory mapped IO, such that the CPU can access
FPGA address space in the same way as regular memory. Inside
the FPGA, the IO bus signals from the host CPU are converted
to its internal bus and transmitted to the programmed hardware
modules or on-chip FPGA memory directly. The sender waits for
an acknowledgment before initiating the next transmission.

3 THREAT MODEL

Enclave Assumptions. We assume that a user wants to run an
application safely using a trusted SGX enclave on a remote machine.
The application itself is public and known to the attacker and there-
fore, the code sections of the application are not security-critical.
However, the data provided to the enclave by the user (e.g., a cryp-
tographic key) is critical and has to be protected from side-channel
leakage prevalent in Intel SGX. In the context of our work, we
assume a single party, i.e., the enclave developer is the same entity
who will bootstrap our service onto the FPGA device. However, the
developer can run multiple enclaves which can concurrently access
the FPGA device for some service.
Hardware Assumptions. Our hardware trusted base consists of
the CPU chip and FPGA chip, which we assume are tamper-proof
and correctly implemented. We assume that the attacker cannot
directly extract secrets or corrupt state within the packages, as
reverse engineering these packages is highly challenging. We note
that, similar to commodity-off-the-shelf CPUs, current FPGAs have
a 3D-stacked layer with 14 nanometer fabrication nodes2, thereby
introducing similar reverse-engineering challenges. Power [40],
thermal [55] side-channels for FPGA and CPU packages are outside
the scope of this paper.
Attacker’s Capabilities. The attacker controls all privileged soft-
ware components including BIOS, OS, VMM, and device drivers.
Furthermore, they control all other external devices (e.g., storage,
networking etc.) on the system except for the FPGA device. There-
fore, while the attacker cannot directly access memory owned by
the target application, they can still launch side-channel attacks
such as page tables and cache attacks. Furthermore, all non-EPC

2Intel i7-9700 CPU has 14 nanometer fabrication nodes, while Xilinx UltraScale+ FPGA
has 16 and Intel Hyperflex FPGA has 14 nanometer.
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host memory (such as DMA/MMIO buffers) is assumed to be com-
pletely controlled by the attacker. Although the attacker cannot
directly extract the data from the FPGA device memory protected
by TrustOre’s access control mechanism (see §4.2, §4.3), we assume
that the attacker can launch side-channel attacks against the FPGA
device memory (similar to DRAM-based side-channel attacks [54]).
We further assume that the attacker has physical access to all hard-
ware components such as FPGAs. Thus, the attacker can launch
physical side-channel attacks, which snoop various buses on host—
the host memory bus, the PCIe bus, and other exposed IO buses.

We note that TrustOre does not mitigate transient execution
attacks (such as ForeShadow, RIDL and Fallout) which target the
enclave program running on the CPU. Instead, TrustOre prevents
side-channel attacks of the enclave’s sensitive data by offloading the
data to the FPGA. Attackers can still launch side-channel attacks
against the enclave program, but the data is protected and the access
pattern is also protected by TrustOre. Specifically, we design the
FPGA modules and interfaces which are secure from various side-
channel attacks (as will be shown in Table 1) and provide the side-
channel resistant storage for sensitive data evacuated from the CPU.
In FPGA, attacks like ForeShadow cannot be launched because no
caches and prediction logics are inside the FPGA (see §4.2).

4 DESIGN

TrustOre is a trusted storage system for enclave applications im-
plemented on an authenticated and attested external FPGA de-
vice. Figure 2 depicts a design overview of TrustOre. In general,
TrustOre consists of two major components — TrustLib and
TrustMod.
TrustLib is an in-enclave library required for establishing and
maintaining the communication channel between the enclave pro-
gram and the trusted storage service.
TrustMod is the core component implementing the trusted stor-
age, which is a module loaded to the FPGA device.

In the coming subsections, we begin by describing howTrustOre
extends trust from an SGX enclave (containing TrustLib) to
TrustMod (§4.1). Since TrustMod is an external component (i.e.,
not located inside the enclave), we design a new remote attestation
mechanism for FPGA along with a cryptographic scheme for secur-
ing communication between these entities. Next, we describe how
TrustOre implements the trusted storage within TrustMod (§4.2).
In general, TrustMod constructs a key-value store using the FPGA
on-chip memory, providing a storage service capable of servic-
ing multiple enclaves while enforcing access control ensuring the
security of enclave data stored on the FPGA device. Lastly, we de-
scribe the two communication mechanisms (i.e., MMIO and DMA)



TRUSTMOD

FPGA Chip
Manufacturer

TRUSTORE

Developer

① KeyGen()
→  , ②-a TRUSTMOD bitstream

②-b Encrypted and signed 
TRUSTMOD bitstream 

⓪-a PrepareKey() 
→ ,

FPGA

⓪-b Write keys to FPGA at manufacturing stage

③-a Encrypted and signed 
TRUSTMOD bitstream

③-b Verify and decrypt 
bitstream to load TRUSTMOD

Enclave 
Code

④ Remote attestation and key exchange

TRUSTMOD

TRUSTMOD

TRUSTLIB

TRUSTMOD

Figure 3: Key management for secure loading TrustMod

supported by TrustOre in order to efficiently connect the afore-
mentioned components (§4.3).

4.1 Loading and Attesting TrustMod

One of the key components of TrustOre, i.e., TrustMod is imple-
mented on an external FPGA device. However, TrustMod has to
be loaded by the untrusted OS (using the device driver) and is there-
fore susceptible to the attacker’s malicious behavior. Since external
devices are not part of the protection scope of SGX, conventional
remote attestation provided by Intel [48] is insufficient to attest the
correct loading of TrustMod. Furthermore, state-of-the-art FPGA
architectures (such as those provided by Intel and Xilinx) lack an
attestation feature as mentioned in §2.2. As a result, we develop
new techniques for extending trust to TrustMod in order to verify
the correctness of loaded instance.
Loading using Device Driver. TrustOre provisions an existing
security feature of the FPGA platform to securely load TrustMod
to the FPGA. More specifically, TrustOre leverages an FPGA’s
secure boot process (see §2.2) to ensure the confidentiality and
authenticity of TrustMod (i.e., a bitstream layout of TrustMod)
to be loaded to the FPGA fabric. The confidentiality of TrustMod
is important since it contains a pre-installed private key, which
is used to attest TrustMod itself (as we explain shortly). On the
other hand, authentication is important because an unauthenticated
module can directly leak the trusted data of an enclave and should
therefore not be utilized.

However, consider a naive secure boot of TrustMod, natively
supported by existing FPGAs and mentioned in §2.2. In particu-
lar, a bitstream layout of TrustMod is initially prepared by the
TrustOre developer (let the TrustOre developer be us in this
paper). Then, this bitstream is delivered to the FPGA manufacturer,
who returns an encrypted and signed bitstream pair which is loaded
onto the FPGA device. Even though the FPGA chip manufacturer

correctly signs and encrypts the bitstreams, this step only guar-
antees the confidentiality of TrustMod. The reason is that the
attacker can just as easily procure signed bitstreams from the FPGA
manufacturer and overwrite TrustMod at runtime. As a result,
there is a need for a further authentication or attestation scheme
to augment the protections of secure boot.
Attestation through TrustLib. TrustLib is responsible for at-
testing that the correct module of TrustMod is loaded onto the
FPGA device that the enclave is copying its private data to. To
achieve this, TrustOre places an RSA private key within the bit-
stream of TrustMod and uses it as a security anchor for runtime
attestation of the FPGA.

To be more specific, we generate a unique attestation key pair
(i.e., kattest

Pub and kattest
Priv ) beforehand. These pairs are generated from

scratch each time a module is compiled ensuring that different de-
vices have different attestation key pairs. Afterwards, TrustOre
appends the attestation private key (kattest

Priv ) to TrustMod ( 2 -a) and
the attestation public key (kattest

Pub ) is provided to TrustLib ( 4 ) as
shown in Figure 3. As TrustMod’s compiled bitstream is handed
over to the FPGA manufacturer for signing, kattest

Priv is stored en-
crypted within the bitstream ( 2 -b, 2 -c). One shortcoming of this
scheme is that the FPGA chip manufacturer may perform circuit-
level reversing to decipher the attestation key stored in TrustMod.
However, in our threat model, the chip manufacturer is trusted and
therefore this problem is out-of-scope. It can be solved by applying
obfuscation techniques proposed previously [37, 46, 79].

As soon as TrustMod’s bitstream is loaded to the FPGA ( 3 ),
TrustLib attests it using its attestation private key ( 4 ), similar to
other known attestation schemes [6, 16]. One notable difference is
that TrustMod does not need to provide a runtime measurement,
since the FPGA’s secure boot already ensures the integrity of the
loaded bitstream. Moreover, in order to ensure the freshness of the
attestation message, TrustLib generates a random nonce for each
attestation and sends it to TrustMod as illustrated in Figure 4 ( 1 ).
Then TrustMod creates a signature of the received nonce with
kattest
Priv , and returns the signature back to the enclave which can be
verified by an enclave using kattest

Pub ( 2 ). This prevents malicious
entities from intercepting and/or replaying communication. There-
fore, if an adversary rewrites the FPGA bitstream to impersonate
TrustMod, this would be detected by our runtime attestation as
long as kattest

Priv from the encrypted bitstream is secure.
In summary, the attestation processworks as follows—TrustLib

writes a random nonce to the fixed MMIO address assigned to the
attestation transmission channel. TrustMod receives the request
of the nonce and starts the signing operation. After signing using
kattest
Priv , TrustMod transmits the resultant back to the enclave. The
enclave attests that it belongs to a correct module using kattest

Pub which
should only work as long as the module has the correct kattest

Priv .

4.2 Bootstrapping a Storage Model

After TrustMod has been loaded onto the FPGA, it begins the
process of building a trusted storage within the internal device
memory. In order to accommodate various enclave applications,
TrustOre designs a flexible storage model which is compatible
with various use-cases — including the general data structures
(similar to ZeroTrace [60]), various files (similar to Obliviate [3])
and general memory blocks (similar to Obfuscuro [4]). Furthermore,



we support an access control mechanism with respect to an enclave
application so that an instance of TrustMod can be concurrently
used by multiple different enclave applications.
4.2.1 Memory Addressing & Tracking. TrustOre needs a scheme
to address the device memory for further storage semantics and
needs to track the device memory which will be allocated to differ-
ent enclaves.
Device Memory Addressing. TrustMod accesses the underly-
ing FPGA memory directly — it does not cache/fetch the memory
content and does not utilize virtual addresses either. This is the
notable difference from enclave applications, where its page tables,
cache units, and branch prediction-units (BPUs) are accessible to
untrusted components and therefore vulnerable to side-channels.
On-Chip Memory Allocation Table (OCMAT). TrustMod
tracks all memory allocated to various enclaves using the On-Chip
Memory Allocation Table (OCMAT). Using OCMAT, all storage op-
erations (requested by TrustLib as we will describe later in §4.3.3)
are carried out based on ID (i.e., a key in a key-value store). Each
row of OCMAT records following information: 1) ID, an identifier
specifying a data object. ID is internally maintained and assigned
by TrustMod; 2) EID, an identifier specifying the owning enclave.
TrustMod ensures an enclave cannot access data objects owned by
other enclaves; 3) On-chip address, a physical FPGA on-chip address
storing the data object corresponding to ID; Since TrustMod’s stor-
age is built upon FPGA on-chip memory (which has linear physical
memory space), this address assists TrustMod to locate the data
using ID; and 4) Size, the memory size allocated for each ID.
4.2.2 Request Servicing. Each enclave is assigned a unique identi-
fier during initialization and their subsequent requests are placed
in an internal FIFO queue by TrustMod, for servicing on a first-
come-first-serve basis. In case the internal FIFO queue becomes full,
TrustMod stalls the bus from accepting more requests by delaying
the acknowledgment signals.
Access Control. TrustMod assigns a unique Enclave-ID (EID)
to each connected enclave. EID is derived from the cryptographic
shared key linked to the enclave and TrustMod stores this in-
formation internally. Afterwards, each subsequent request from
the enclave (identified by encrypted communication on a fixed
MMIO/DMA region), is attributed to this EID. The EID ensures
that an enclave can only access its own memory and a request
to a memory region it does not own will be promptly caught by
TrustMod and dropped.
Servicing Memory Allocation/Deallocation Requests. When
allocating a new data object, TrustMod first searches for an avail-
able ID, which will be dedicated for this object. Then, TrustMod
searches for an available FPGA on-chip memory large enough to
hold the requested object size. Finally, all this information is stored
as a new row in OCMAT, while also appending the EID of the re-
questing enclave. When deallocating the object (specified by its ID),
TrustMod removes the matched row in OCMAT only if TrustLib
is the owner of the object. This effectively makes the object corre-
sponding FPGA on-chip memory space available. It is worth noting
that TrustMod denies all requests to map, unmap or access FPGA
memory from all entities except the enclave which has established
secure channel with TrustMod (see §4.3).

Servicing Read/Write Requests. To perform write/read request
for an object, TrustMod first asserts whether the request has been
initiated by the owner of the enclave (using the allocated enclave-
ID) and then locates the FPGA on-chip memory address stored in
OCMAT. Next, for a write operation, TrustMod writes the pro-
vided data to the FPGA on-chip memory sequentially. For a read
TrustMod transfers data sequentially starting from the FPGA on-
chip memory to TrustLib. We note that TrustMod does not have
hardware cache units in accessing on-chip memory within the
FPGA, so TrustOre is secure against cache side-channel attacks
plaguing in the traditional computing architectures.

To mitigate any potential side-channel issues in accessing FPGA
on-chip memory (e.g., DRAM-based side-channel attacks utiliz-
ing the time difference between row hits and row conflicts [54]),
TrustMod ensures that the access time of FPGA on-chip memory
is always the same from outside. To be specific, TrustMod ensures
that the access time always takes the worst-case cycle (which is
obtained through empirical experiments) by stalling the response.
Although this worst-case based mitigation may not sound the best
design choice from the performance aspect, this in fact only incurs
0.7% overhead according to our evaluation — the 64-Byte array
access takes 9639.6ns , 67ns (0.7%) more than the one before the mit-
igation. This is because performance bottlenecks of TrustOre are
mostly in either packet construction or IO data transmission, and
thus always-worst DRAM access time does not contribute much
on the overall performance overhead. In the next section (§4.3), we
will explain how the above mentioned data is actually transmitted
between TrustLib and TrustMod.
4.2.3 Memory Resource Management. TrustMod has to handle
fragmentation of device memory which can occur since different
enclaves will have different memory demands which have to be
accommodated altogether.
On-Chip Memory Compaction. In order to avoid memory frag-
mentation and subsequent failure of memory allocation request,
TrustMod runs a memory compaction algorithm [27] at regular in-
tervals, which moves fragmented data objects to available space so
as to cluster data objects in the on-chip memory space. More specif-
ically, TrustMod compacts the on-chip memory if it has processed
a specific number of deallocation requests (a configurable parame-
ter), and accordingly updates OCMAT. Although the attacker could
figure out through timing channels whether a memory compaction
event is taking place or not, the event itself leaks no meaningful
information to the attacker. It only shows the device does not have
a physically contiguous chunk of memory as requested.

In the unlikely case that a new allocation fails even after per-
forming memory compaction, TrustMod can swap-out data ob-
jects to secondary storage (i.e., system memory or disk). In order
to avoid leaking information, TrustMod would require Oblivious
RAM (ORAM) primitives to ensure secure loading/unloading of
data. However, recent FPGA on-chip memory has reached several
GBs and we believe that this will not occur frequently. The design
of such a scheme is out-of-scope of this paper.

4.3 Connecting TrustLib and TrustMod

This subsection first describes how TrustOre creates a secure
channel between its two major components (§4.3.1). Then, we elab-
orate of the I/O communication techniques supported (§4.3.2) and



lastly, we explain the programming interfaces supported for such
communication (§4.3.3).
4.3.1 Secure Channel Establishment. To facilitate secure commu-
nication between TrustLib and TrustMod, we use the Diffie-
Hellman [58] key exchange. This allows TrustLib and TrustMod
to share a secret key, which can be used to encrypt and decrypt
all later communication. We use rdseed instruction [32] within
TrustLib to obtain true random numbers from CPU and include
FPGA-based true randomnumber generator proposed in [53] within
TrustMod, to make extremely hard for the adversary to influence
or guess random numbers on both CPU and FPGA. Alongwith the
Diffie-Hellman, TrustMod also sends an attestation nonce (using
kattest
Priv , as per the scheme described in Figure 4) which is used by

TrustLib to ensure that it is communicating with a correct instance
of TrustMod.

While generating the secret values required for DH, TrustLib
and TrustMod utilizes constant-time implementations to avoid
leaking information. More specifically, TrustLib and TrustMod
always run a multiplier by a fixed number of times, which may
include dummy runs (i.e., multiplying with 1). To make even the
execution time by adding dummies is a widely used concept in the
work mitigating timing side-channel attack [2]. We note that the
computation cycles of TrustOre’s multiplier and divider depend
on the width of data (not the value of it), and the width is constant.

After the above setup, only TrustLib and TrustMod can de-
rive the shared random key, дab mod p, based on their own secret
value, a and b, respectively. This shared random key is used to
encrypt and decrypt all following communication. Similar to the
attestation process, the key exchanging procedure can be started
as needed during program execution through the fixed MMIO ad-
dress assigned to the key exchanging transmission channel. We use
AES-128 (with Galois/Counter Mode) as the authenticated encryp-
tion algorithm because its side-channel resistant implementation is
easily accessible with the SGX library using AES-NI.
Freshness and Integrity. In AES-GCM, a 96-bit counter, Initial-
ization Vector (IV) is initially set through our key exchange mech-
anism and synchronized between the enclave and TrustMod by
monotonically increasing for every AES operation. AES-GCM also
provides an authentication tag that is calculated by combining the
hashes of the messages and the counter value. Since the counter
value acts as a timestamp, data freshness as well as the integrity
is guaranteed, which can prevent an adversary to corrupting or
replaying captured data. Therefore, TrustOre avoids the need for
Merkle Tree typically demanding considerable overhead to manage.
4.3.2 Supported I/O Communication Methods. TrustOre supports
two communication channels between TrustLib and TrustMod,
Memory Mapped IO (MMIO) and Direct Memory Access (DMA).
Memory Mapped IO (MMIO). An MMIO channel is established
using the device driver. We assume this driver has been installed
on the untrusted operating system, and it registers the FPGA to
the Linux device file system (devfs) such that the access to the
FPGA device memory can be performed through MMIO. Since all
communication through this channel is encrypted, the device driver
can at most initiate a denial-of-service attack (such as unmapping
or modifying the PCIe configuration during runtime) which is also
beyond the scope of SGX. To setup MMIO access for an enclave
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Figure 4: Secure channel establishment between CPU and FPGA

application, TrustLib asks the device driver to map TrustMod’s
memory to TrustLib’s non-EPCmemory region which can directly
be accessed without an enclave exit.
Direct Memory Access (DMA). In addition to MMIO, TrustOre
also supports efficient transfer of large data using Direct Memory
Access (DMA). The DMA mode of memory transfer involves two
main components — (a) a MMIO region for passing requests, and
(b) a DMA buffer to transmit actual memory related to the requests,
both setup by the device driver. Requests, through MMIO request
buffer, are passed in plaintext but are only used by the device to
fetch the actual encrypted commands sent byTrustLib on theDMA
buffer. Although there are setup costs in sending commands to the
DMA controller and processing DMA interrupts, the DMA mode
allows burst transmissions on the IO bus, supporting significantly
improved throughput for a big chunk data packets (as we show
in Figure 5a and Figure 5b).
Preventing Side-channels onMMIO/DMARegions. Although
each request/response transmitted through MMIO/DMA is en-
crypted, TrustOre could still suffer from side-channel inference as
messages are passed. To protect from these side-channels,TrustOre
ensures that all data accesses — attestation, key exchange, data
packet transfer and DMA request are performed through the
dedicated and fixed MMIO addresses. Furthermore, TrustOre
reads/writes a data packet within an MMIO region at the gran-
ularity of 16 bytes that is synchronized to the block size of AES. To
access a packet larger than 16 bytes, TrustOre repeatedly writes
or reads the 16 bytes region while repeatedly concatenating each
packet. Therefore, the enclave accesses the same MMIO location
regardless of execution context and in the exact same way, thereby
mitigating other side-channels. The concrete empirical analysis
is provided in the Appendix C. TrustOre also restricts that the
data block size is always the same at runtime (e.g., ORAM-based
applications often used the static data block size by default, such as
4KB [3, 67]). As a result, TrustOre always reads or writes the same
size of data irrespective of the request, and that size is determined
during the initialization.
4.3.3 Supported Programming Interfaces. After setting up the com-
munication channels betweenTrustLib andTrustMod,TrustOre
is now ready to accept commands from the enclave program. In the



following we first explain the singular interface function TrustLib
can invoke on TrustMod to perform various different operations.
Then we describe how TrustOre defines the communication for-
mat of the interface function.
Storage Interfaces. TrustMod supports the following interfaces
that TrustLib can request to use various storage operations. The
interfaces are labeled as: alloc, dealloc and access.
OUT ID alloc();
OUT STATUS dealloc(IN ID id);
OUT STATUS access(IN type, IN id, IN SIZE_T offset,

IN void* dat_in, OUT void* dat_out, IN SIZE_T size)

In the above prototype of the interface functions, IN and OUT are
a type qualifier: IN denotes an argument that TrustLib is respon-
sible to provide a value; and OUT denotes a return or an argument
that TrustMod is responsible to return or fill up in response to
the request. ID denotes an identifier of a data object, and STATUS

indicates whether the invocation was successful or not.
alloc allocates a data object within TrustMod’s on-chip mem-

ory, and returns an ID which uniquely identifies the corresponding
data object. dealloc makes the previously allocated data object
available within TrustMod’s on-chip memory. It is worth noting
here that alloc and dealloc functions are meant to be only called
at the start and end of the program’s execution respectively. There-
fore, calls to these functions are not sensitive and do not need to
be protected as such.

In access, TrustMod takes the offset as a parameter to deter-
mine the offset within the data object specified by ID. Then, de-
pending on type (i.e., the first parameter which can be either read
or write), TrustMod performs the followings. In the case of read,
TrustMod copies the source data in a range starting from (base +
offset) to (base + offset + size) to the destination buffer specified by
the data argument, where base is the FPGA on-chip memory ad-
dress specified in OCMAT. In the case of write, TrustMod updates
the FPGA’s internal memory with the data provided by TrustLib.
It is worth noting here that access equalizes the lengths of data
packets in either case of write or read by appending dummies. A
single interface is utilized to serve both read and write requests to
ensure that attackers cannot distinguish between these requests, in
order to provide protections at-par with Oblivious RAM (ORAM).
Communication Packet Format. For each interface command
invoked by TrustLib, a request packet is first sent from TrustLib
to TrustMod, and then a response packet is returned. TrustOre
illustrates the format of this packet in Figure 8 (in the Appendix A).
Following the illustrated format, TrustOre constructs a packet
according to IN and OUT type qualifiers — the request packet sets
fields with IN while the response packet does with OUT.

We also tried to reduce the packet header information to support
multiple enclaves. To be more specific, we do not include an ID
of each enclave in the transaction header since this would require
more bits in the header. Instead, as we assign a unique MMIO
address for each TrustLib instance (i.e., each enclave instance), it is
possible to easily support multiple TrustLib through transporting
transactions to different address value.

5 SECURITY ANALYSIS

We summarize the security properties achieved by TrustOre in Ta-
ble 1. In the following paragraphs, we provide details about critical

side-channel attacks against our system and discuss the remaining
attacks (mentioned in the table and previously tackled in the design
section) in Appendix B.
Side-channel attacks against Enclave (TrustLib). Since en-
clave memory is prone to side-channel information leakages,
TrustOre carefully provisions TrustLib to mitigate information
leakage through all known memory channels including page table,
cache and branch-prediction. In particular, TrustLib crafts all read
and write requests in the same branch-free manner (using oblivi-
ous wrapper [56]) to ensure that the attacker cannot distinguish
between a read and write request. It is worth mentioning here that
alloc and dealloc are distinguishable but since they are meant to
be called at the start and end of enclave execution respectively, they
do not possess or leak sensitive information.
Side-channel attacks against FPGA (TrustMod).As previously
mentioned, our storage model (on TrustMod) has no page tables
or caches. Also, TrustMod guarantees that each read/write request
returns the same amount of data (fixed during initialization) irre-
spective of what the program has requested. Therefore, TrustMod
is free from memory-based side-channel attacks.

Furthermore, each request to TrustMod could leak some tim-
ing information (i.e., the processing time of a request is depen-
dent to the processing time of previous requests). As we illustrated
in §4.2, TrustOre ensures that regardless of TrustOre’s opera-
tional contexts, an allocation request takes the worst-case time
and read/write requests are constant time. Therefore, the only in-
formation leaked is the number of previous read/write operations
performed by TrustMod. It is worth noting that this information
is not secured by other schemes (e.g., ORAM-based storage) either
and is out-of-scope of our work.

Lastly, TrustOre does not allow any other logic to run con-
currently on the FPGA running TrustMod and therefore this is a
non-viable attack channel.

6 IMPLEMENTATION

In the following, we explain how TrustOre implements its two
main components, TrustMod and TrustLib.
TrustMod. We implemented all components of TrustMod in
Verilog-HDL, and converted those to the bitstream by Xilinx’s Vi-
vado 2015.1 tool. Then we generated and managed secret keys
for the secure loading and the attestation as explained in §4.1.
TrustMod is loaded into the XC7Z045 FFG900-2 Xilinx Zynq-7000
series FPGA [81] which is connected to the host CPU via PCIe, and
runs at 150MHz. FPGA chip XC7Z045 contains 2.2 MB on-chip block
RAM and two 1 GB on-board DRAMs. We implemented TrustOre
to utilize on-board DRAMs if the data size is over 2.2 MB. Our logic
for TrustMod has 3,846 lines of code.

Our current implementation of TrustMod supports the follow-
ing storage structures:

(1) Trusted Data Array. We implement a trusted data array
(similar to ZeroTrace [60]) which is allocated using our alloc
(mentioned in §4.3.3). The trusted data array has function-
ality of read/write on indices using our access calls and
deallocation is performed using dealloc call.

(2) Trusted File System. We also develop a trusted file sys-
tem (similar to Obliviate [3]). We extend our APIs (namely
trus_open, trus_close, trus_read, trus_write, trus_fsync)



Table 1: Security analysis of TrustOre. More details are provided in Appendix B.

TrustOre Event/Component Potential attacks Defenses

Loading TrustMod to the FPGA
Reverse-engineering the bitstream;
Unloading/exchanging the module Secure boot and remote attestation (§4.1)

Communication between TrustLib and

TrustMod

Eavesdropping/tampering; Side-channels for
MMIO/DMA region

Cryptographic schemes (§4.3.1); Oblivious manner accesses
(§4.2.2, §4.3.2)

TrustLib Side-channels on EPC memory [41] No input-specific data access; Branch-free implementation
(§4.3.3)

TrustMod
Side-channels on FPGA memory; Concurrent
attack logic on FPGA [84]

No virtual memory or caches; Constant-time access (§4.2.2); No
other logic runs with TrustMod (§4.1)

FPGA device driver Eavesdropping/tampering Cryptographically-secured protocols (§4.3.1)

in order to support POSIX file system APIs. While some
of these calls are trivial to understand, we mention a few
that pose some trick to them.
trus_open(). Since we need to allocate a new region within
the FPGAon-chipmemory, alloc is called as part of trus_open.
When O_WRONLY or O_RDWR is specified as an argument, we al-
locate a pre-defined size, similar to what Obliviate does. If the
program attempts to write over the boundary of the file, we
re-run the function with the O_APPEND flag and TrustMod
doubles the current file size in the trusted storage.
trus_close(). The process of closing a file involves dealloc
releasing the FPGA on-chip memory resources and writing-
back all the stored data to the original file. This does not
leak any information since it is a sequential write-back of
the entire contents onto the main memory. Also, TrustOre
uses a library for data sealing provided by SGX to ensure
confidentiality of files.

TrustLib.We implemented this component using the Intel SGX
SDK. Each API listed above is implemented as a wrapper function
calling the primitive interfaces (i.e., alloc, dealloc, access) as sub-
routines. Two software modules, Challenger and Key Exchanger
illustrated in Figure 4 for attesting TrustMod and exchanging the
session key are also implemented together in TrustLib. The open
source FPGA driver [10] was loaded into Linux kernel to register
the FPGA through MMIO and enable the DMA transfer. We do not
need to modify the driver but only adds 66 lines of code to the non-
enclave code for delivering each pointer of MMIO and DMA buffer
to the application enclave. In an enclave, TrustLib consists of 212
lines of code where the primitive interfaces introduce 155 lines
of code among them. As a part of TrustMod, hardware modules
relating to cryptographic operations (i.e., Attester, Key Exchanger
and AES) consists of 1,412 lines of code.

7 PERFORMANCE EVALUATION

In order to show the superior performance achieved by TrustOre
against existing ORAM-based schemes employed to defend against
side-channel leakage, we perform a case-study comparing each of
Obliviate [3], ZeroTrace [60] and Obfuscuro [4].
Experimental Setup. All our experiments were performed on
Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz (Skylake with 8 MB

cache) with 32GB of RAM (128 MB for EPC) and running Ubuntu
16.04 with Linux 4.4.0.31 (64-bit). We used the official Intel SGX
SDK and Intel SGX drivers for Linux for all experiments. To obtain
experimental values, each of the same experiments was repeated
at least 100 times. In addition, power saving mode was turned off
and CPU frequency was set to the maximum value in Linux in
order to minimize variation between experiments. For all the time
measurements, clock() function was used in common.

7.1 Experimental Results

In this subsection, we show the performance achieved by individual
storage structures supported by TrustOre.
Performance ofDataArray. We compare the latency and through-
put achieved by TrustOre while accessing a data array as com-
pared to ZeroTrace. Figure 5b shows the latency when accessing
an index within an oblivious array of various sizes using Zero-
Trace’s ORAM-based access and TrustOre’s FPGA-based access.
Furthermore, we provide results by varying the size of N , i.e., 5000,
10000, and 50000. The value of N corresponds to the size of the
oblivious array for ZeroTrace. Since ZeroTrace uses ORAM oper-
ations, it has to create a fixed size tree (and a fixed size array as
a result). TrustOre does not have such a restriction as long as
the size does not exceed the total memory available on the FPGA
device. Based on the results, TrustOre accesses data 49× faster
than ZeroTrace on average across different block sizes. In the case
of 64B block, which is a general cache-line size and thus referenced
as a default configuration when evaluating ORAM-based systems’
performance [21, 22, 57], TrustOre shows 37× faster access speed.
However, as the block size grows (greater than 103), the amount of
memory accessed for an ORAM operation exponentially increases,
and as a result the performance degrades considerably. For exam-
ple, for block size of 105, the difference between ZeroTrace and
TrustOre is almost 75×.

To better compare the scalability difference between TrustOre
and ZeroTrace, we measure the throughput with respect to the num-
ber of blocks (N ) as shown in Figure 5c. In the figure, the throughput
of ZeroTrace decreases as N increases, while TrustOre shows con-
stant throughput. This is due to that the ORAM tree that ZeroTrace
has to access increases considerably as the value of N increases.
It is worth recalling that ORAM trees grow exponentially as the
blocks are increased in order to maintain the security properties.
For further details on this matter, we refer to the original works
related to ORAM [68, 78].

To measure the performance of TrustOre compared to the state-
of-the-art hardware-based ORAMs [21, 22], we compared the access
time for 64B block with TrustOre’s one and the performance num-
ber reported in [21, 22]. Compared to the native access time for
64B block (i.e., without any protection mechanism), TrustOre de-
creases the throughput by 102× while [21] and [22] decrease 22×
and 4×, respectively. While this performance result may not be
in favor of TrustOre, we note that TrustOre does not require
any hardware/architectural changes which would be challenging
to deploy for practical use-cases. We further note that ZeroTrace
decreases by 3774×, so we argue that TrustOre provides the com-
parable performance leveraging the readily available hybrid CPU-
FPGA architecture.
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Performance of File System. We evaluate the performance of
TrustOre’s file system as compared to the native file system (ac-
cessing the disk) and Obliviate [3]. Figure 6 shows the results of
sequential and random read/write (not including open/close) com-
paring the three file systems using Iozone [51], a widely used file
system benchmark. TrustOre performs 102× slower on average
than the native file system, while Obliviate 221× slower than the
native one. When the test file size is 2 MB, the performance of Oblivi-
ate and TrustOre is comparable. This is because the TrustOre’s
IO transmission overhead through PCIe is still higher than the oper-
ation of the Obliviate’s ORAM controller which deals with the 2 MB

data set. However, TrustOre maintains the constant throughput,
44 MB/s on average, regardless of the file size, while Obliviate ex-
hibits severe throughput degradation as the file size increased. As
the size of the data set grows, the memory accessed by Obliviate’s
ORAM controller increases significantly due to the increased size
of the ORAM tree. On the other hand, TrustOre performs only
a number of operations depending on the requested data size. In
the test for a 1GB file, TrustOre is approximately 10× faster than
Obliviate. We expect this trend to explode further as the file size
increases but due to implementation limitations, we were unable
to get results from larger than 1GB files for Obliviate.
Other Systems (Obfuscuro). Our storage structures (e.g., trusted
data array) can also be indirectly applied to other systems. For
example, Obfuscuro [4] proposes an obfuscation scheme for Intel
SGX while relying on trusted in-enclave storage using ORAM. We
compared our trusted storage against Obfuscuro’s ORAM-based
storage by reusing their framework but changing all ORAM access

Table 2: Execution time comparison of nbench between ZeroTrace

and TrustOre

nbench Native
SGX (us )

ZeroTrace
-based (sec )

TrustOre
-based (sec )

Speed
-up

Num sort 548.186 229.947 1.777 129.38
String sort 18670.301 17526.434 140.267 124.95
Bit operation 0.001 2434.542 12.666 192.21
Fp. emulation 1556.493 6.795 0.091 74.30
Fourier 7.543 0.065 0.002 31.43
Assignment 297.796 121.658 1.071 113.59
Idea 56.430 800.842 4.501 177.94
Huffman 149.011 109.081 0.568 191.92
Neural net 7954.184 10839.355 94.621 114.56
Lu decomp. 280.143 430.785 2.215 194.53
GeoMean 120.16

operations in their source code (publicly available [1]), with our
trusted data array implementation.

We tested three programs which perform matrix multiplication
(matmul), integer summation (sum), and finding the max in an array
(findmax). These programs were provided to us with the source
code of Obfuscuro. To test the scalability of TrustOre, we vary
the input data size n for each of the aforementioned program. As
shown in Figure 7, the execution time of Obfuscuro exponentially
increases while that of TrustOre increases smoothly. For example,
TrustOre executes findmax 2.88× faster when the input size is 2K
and 43× faster when the input size is increased to 64K. It demon-
strates that TrustOre solves the scalability problem of Obfuscuro
which has to rely on costly ORAM operations.

7.2 Other Benchmarks

Nbench. We evaluate the performance of TrustOre for real world
workload by using nbench [47]. To run nbench to SGX, each test



program of nbench is manually modified and split into two parts:
non-enclave and enclave part. Non-enclave part generates input
data arrays, copies them to enclave arrays and then enclave runs
the program without another entry/exit until finishing the program.
Each memory store/load operation in enclave is modified to per-
form oblivious access using ZeroTrace’s API calls and TrustOre’s
access API. This modification is straightforward and is intended
to see how slow the performance of oblivious access would be on
nbench. For the fair comparison, we set N (number of blocks) for
ZeroTrace to the exact number of blocks required by each individ-
ual benchmark within the test-suite. N varies from 3000 to 20000
in our experiment. And the block size is set to the same as the size
of each data object (mostly integers and floats). As shown in Ta-
ble 2, although TrustOre-based shows orders of magnitude slower
than the native execution because of IO delay to access FPGA per
every memory accessing operation, TrustOre is 120× faster on
average than ZeroTrace. As expected, TrustOre shows better per-
formance in programs where data access occurs heavily (Huffman,
Lu decomp.) rather than compute-intensive ones (Fourier).
MMIO Versus DMA. TrustOre supports both communication
standards for CPU-FPGA communication, i.e., MMIO and DMA. In
order to gauge the performance difference between these standards,
we measure the latency when transferring data packets of various
sizes using each of the aforementioned channels. As shown in Fig-
ure 5a, TrustOre transfers data of size greater than 128-bytes faster
using DMA than MMIO. There are two main reasons why DMA is
slower when the data sizes are smaller: (a) requiring to transfer the
control command to the DMA controller within TrustMod in order
to initiate DMA transfer exceeds the performance gain and (b) wait-
ing the DMA interrupt passed back from OS also takes some time.
So, to maximize the performance of TrustOre, TrustLib seam-
lessly chooses DMA transfer mode for data bigger than 128-bytes
and MMIO otherwise.
End-to-End Key-Value Store. To evaluate TrustOre on the real
system requring the side-channel protection, we usedTrustOre for
an end-to-end key-value store application, ShieldStore [39]. Shield-
Store is a state-of-the-art in-memory key-value store designed for
SGX. ShieldStore addresses the performance issues due to the SGX
memory limitation through storing the data in unprotectedmemory,
where each key-value pair is individually encrypted and integrity-
protected using its secure component running inside an enclave.
However, ShieldStore is vulnerable to side-channel attacks, since
ShieldStore does not hide the address being accessed. Thus, its key-
value store is insecure against access pattern based side-channel
attacks. TrustOre offers a side-channel resistant storage for Shield-
Store to address those attacks.

We implemented TrustOre-based ShieldStore, which modified
ShieldStore to store the table (the hash and its corresponding data)
on our trusted data array (see §6). To better understand the per-
formance impact of TrustOre-based ShieldStore, we also imple-
mented ZeroTrace-based ShieldStore, which provides side-channel
resistant storage with an ORAM mechanism. We compare the
throughput of key-value store operations (i.e., SET/GET) between
ZeroTrace-based ShieldStore and TrustOre-based ShieldStore. 500
random operations were tested when both the sizes of key and

Table 3: Throughput comparison of ShieldStore between ZeroTrace

and TrustOre

ShieldStore ZeroTrace-based TrustOre-based
Throughput (Ops/s) 35465.484 1.702 320.054
Slow-down - 20.8K× 111×

value are 16-byte. As shown in Table 3, TrustOre-based Shield-
Store shows 188× higher throughput against ZeroTrace-based one
on average. Compared to the baseline ShieldStore, TrustOre-based
ShieldStore showed 111× lower throughput, while ZeroTrace-based
one showed 20.8K× lower throughput. We believe such an out-
standing performance improvement of TrustOre-based Shield-
Store (compared to ZeroTrace-based one) is due to the fact that
TrustOre only requires the same number of memory accesses
comparing to the native ShieldStore, while ZeroTrace needs much
more accesses to perform an ORAM mechanism.

8 DISCUSSION

This subsection discusses more subtle, sophisticated attacks (which
are not part of our threat model) against TrustOre: cold-boot
attacks and part of side-channel attacks. We also discuss the secu-
rity concerns about involving the FPGA manufacturer as our new
trusted party.
Cold-BootAttacks. Cold-boot attacks attempt to read un-encrypted
data stored in memory by physically detaching it from the board.
Similar attacks may be launched on TrustOre as well — desol-
dering the FPGA chip at runtime and dumping the data from the
on-chip memory. However, compared to the previously known
cold-boot attacks [28, 83], it would be much more challenging to
dump FPGA on-chip memory. FPGA on-chip DRAM is 3D stacked
with the FPGA fabric, and IO port for accessing the stacked DRAM
is not directly exposed unlike a traditional DRAM [35].

Nevertheless, in order to completely thwart cold-boot attacks,
TrustOre can be extended with a memory encryption mechanism
similar to Intel SGX’sMemory Encryption Engine [26].We note that
as TrustOre’s encryption logic would be written in bitstream and
eventually run at the hardware level and therefore, it should incur
less overhead compared to the purely software-based ones [14, 29].
Side-Channel Attacks TrustMod introduces new operational
semantics to the system, including allocation, read, write, and deal-
location requests, each of which can be a source of side-channel
attacks. First, these requests may leverage resources shared with
other bitstream instances, as an OS may instruct the FPGA to run
other bitstream than TrustMod. To mitigate these side-channels,
TrustOre always wipes out all data and resources before being
unloaded. Moreover, since the OS has the full control over the
FPGA and thus can suddenly reprogram the FPGA before wiping
all data and resources, TrustOre disables the processor’s connec-
tion to the configuration ports of the FPGA during the secure boot
as illustrated in [17]. Second, each request may share resources
with other requests (i.e., the processing time of a request is depen-
dent to the processing time of previous requests). As we illustrated
in §4.2, TrustOre ensures that regardless of TrustOre’s opera-
tional contexts, an allocation request takes the worst-case time
and read/write requests take the constant time, effectively avoiding
potential side-channel attacks.
The Trusted FPGA Manufacturer We acknowledge that impos-
ing an additional trusted party (i.e., an FPGA manufacturer) may
weaken the original threat model of SGX. We argue that, however,



if the FPGA manufacturer and the CPU manufacturer are the same
(i.e., Intel), this would not raise much trustworthy issues. In fact,
given the market dominance on CPU and FPGA, we believe both
would be (or already are) manufactured by the same party, Intel.
Intel is aggressively pushing towards an CPU-FPGA hybrid archi-
tecture in response to the data-intensive computing trends (e.g.,
Xeon-FPGA chip [33], FPGA acceleration card [34]). In this case,
Intel would be manufacturing both CPU and FPGA, so the key
can be installed in the FPGA by Intel (just as the SGX key in the
CPU) in order to utilize the FPGA as a security extension of SGX.
In this deployment scenario, it can be assumed that the server for
bitstream encryption/signing is also securely integrated with the
server for the SGX attestation.

9 RELATEDWORK

Systems based on SGX. Haven [9] is the pioneering SGX work
which developed a windows-based library operating system (Li-
bOS) to enable easy porting of legacy applications on Intel SGX. Its
counterpart, Graphene [70, 71] proposed a Linux-compatible LibOS.
OpenSGX [36] provides an opensource framework for SGX devel-
opment. Ryoan [30] implements a distributed sandbox, Scone [7]
proposes secure containers, and SGX-Shield [62] enables ASLR on
SGX enclave. Graviton [75] proposes hardware modifications to
enable trusted execution on GPUs in tandem with Intel SGX. All
aforementioned systems are not concerned with side-channel limi-
tations of Intel SGX andwould greatly benefit from the side-channel
protections afforded by TrustOre.
Side-channel Attacks on SGX. There are four main types of
side-channel attacks discovered against Intel SGX, i.e., IAGO [12],
Page table [72, 82], cache [11, 24, 61] and branch prediction [19, 42].
Leaky Cauldron [77] provides an overview of memory-based side-
channel attacks possible within Intel SGX. TrustOre involves a
trusted FPGA in order to protect trusted data from all aforemen-
tioned side-channels.
Side-channel Mitigations for SGX. The existing side-channel
defenses for Intel SGX can be divided into cryptographic [3, 4, 60]
and non-cryptographic [25, 62, 64, 65] defenses. The existing cryp-
tographic defense schemes utilize ORAM to protect the application
from access pattern-based attacks. Although ORAM offers crypto-
graphic security, it is prohibitively slow (as we experimentally show
in §7) since it involves a degree of higher memory interactions than
native execution. On the other hand, existing non-cryptographic
defenses offer comparatively lower overheads but protect against in-
dividual side-channels and cannot be leveraged to protect against all
side-channels which leak access patterns. For example, T-SGX [64]
protects against page-fault attacks but cannot protect against page
table and cache attacks. Similarly, Cloak [25] can protect against
page-fault and cache attacks but cannot protect against page table
attacks. SGX-Shield [62] can only provide probabilistic defense of
side-channels through memory randomization. Compared to all
existing solutions, TrustOre offers superior performance as well
as proven protection against all access pattern leakage.
Other Side-channel Mitigation Schemes. There are various
other software [15, 38, 56, 66, 85] and hardware [20, 43, 45] schemes
to mitigate side-channels in non-SGX environments. Some of the
software schemes [15, 38, 85] are not applicable within Intel SGX

since they require OS support. From amongst the applicable schemes,
Raccoon [56] is the most notable since it provides protections
against all digital side-channels. However, Raccoon only secures
annotated part of a program’s data and uses oblivious copy (and
ORAM) to securely access the data at a high cost to performance (i.e.,
21×). Hardware techniques, such as HOP [50] and Phantom [45],
also utilize ORAM to protect the data which as mentioned before
is very slow as compared to TrustOre. Also, these schemes are
prototyped using custom (RISC-V) processors and are therefore less
deployment-friendly than TrustOre.
Secure Memory Architectures. The most related works are [2,
8], which leverage computation capabilities (i.e. encryption and
decryption) of 3D-stacked memory to achieve ORAM-equivalent
security guarantees. In particular, it encrypts all memory bus traffic
and thus adversaries launching man-in-the-middle attacks cannot
see the intention behind memory bus uses. However, these ap-
proaches are limited for the following reasons: essentially built
based on new memory architecture, smart memory, which comes
at high cost and provides the limited capacity. Secure DIMM [63]
employs an ASIC buffer chip to offload ORAM functionality such
that memory bandwidth can be reduced. Compared to TrustOre,
all of these works rely either on new memory structure or a cus-
tom hardware, limiting their use-cases in real-world. TrustOre
is implemented on hybrid CPU-FPGA architecture and Intel SGX,
readily available to use today.

10 CONCLUSION

This paper proposed TrustOre, a system built for stopping side-
channel attacks against Intel SGX. It utilizes an external device, an
FPGA, to implement a trusted storage service for SGX applications.
Since the FPGA is running in an isolated environment having its
own dedicated memory-related units, TrustOre avoids memory-
based side-channels by design. Moreover, unlike ORAM-based side-
channel protection solutions, TrustOre scales well as the data
size increases, demonstrating its strong practical prospects for real-
world workloads. We emphasize that as TrustOre does not impose
any architectural change but can be deployed as a simple plug-in to
SGX machine’s PCIe slot, it is readily used to thwart side-channel
attacks in Intel SGX, arguably one of the most cryptic and critical
security holes today.
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Appendix A DATA FORMAT OF

TRANSACTION PACKET

One notable feature of TrustOre’s packet format is that it provides
two format options for the request packet, ReqT and ReqG. ReqT
is for time efficient communication by decreasing the header over-
head, particularly when N ≤ 8 (N is the size of data). ReqG is for
supporting other general cases whereN is larger. Figure 8 illustrates
two packet formats, ReqT and ReqG supported by TrustOre. Since
every encryption/decryption is executed in a unit of AES block, the
number of the blocks directly impacts the performance. ReqT is for
reducing the number of the AES blocks when the data size N is
relatively small.

In particular, if N is 8B, the total request packet size is to be
128-bit in the ReqT format, which is the same as an AES block size
and thus an entire packet can be sent within a single AES block.
However, if data of 8-byte size is transmitted in ReqG format, the
total packet size becomes 208-bit and twoAES blocks (the remaining
48-bits are filled with dummy) have to be transmitted. Therefore,
the access latency is increased each time as compared with ReqT.

Appendix B FURTHER SECURITY ANALYSIS

Wediscuss the security properties ofTrustMod components/events
not thoroughly discussed previously.
Loading TrustMod As mentioned in §4.1, TrustOre uses ex-
isting hardware-based security features implanted in commod-
ity FPGA platforms in order to guarantee the correct loading of
TrustMod. To reiterate, FPGAs support a secure boot mechanism
which ensures confidentiality and verifiability. Using the secure
boot mechanism, TrustOre can load an encrypted module onto the
FPGA. Furthermore, it can verify the module’s correctness through
a returned bitstream from the FPGA corresponding to the memory
layout of the module. The bitstream layout of TrustMod remains
consistent regardless of the underlying FPGA and can therefore
be easily verified by the enclave. If the verification is successful,
the enclave knows that the correct module was securely loaded
on the FPGA via the untrusted system. In case the verification
fails, the enclave finds out that some entity on the system is behav-
ing maliciously and aborts. If the adversary behaves maliciously,
TrustOre has no other choice but to stop executing since it consti-
tutes a denial-of-service violation, neither guaranteed by Intel SGX
or TrustOre.
Communication channel. TrustOre creates a secure channel
between TrustMod (loaded onto the FPGA) and TrustLib (located
inside the enclave) using Diffie-Hellman secret key exchange proto-
col [58]. TrustOre establishes a secret key between the two trusted
parties which is bolstered using side-channel oblivious AES-GCM
protocol [18] provided by Intel SGX SDK. All ensuing communi-
cation (i.e., allocating/deallocating or reading/writing memory) is
encrypted using the shared key as it passes through the untrusted
memory. All requests passed from TrustLib to TrustMod are en-
crypted and written directly by the enclave onto the MMIO regions
or DMA buffers. At this point, OS can launch only a denial-of-
service attack by remapping MMIO and DMA regions. Furthermore,
each request is carefully crafted to be indistinguishable from each
other (as mentioned in §4.3). To elaborate, TrustOre ensures that
the size of each transaction is set at the start of the program and

Table 4: Pearson correlation of the accessed memory addresses

Native SGX
(1st input)

Native SGX
(2nd input)

TrustOre
(1st input)

TrustOre
(2nd input)

Native SGX
(1st input) 1 0.383801 0.035149 0.035149

Native SGX
(2nd input) 0.383801 1 0.034864 0.034864

TrustOre
(1st input) 0.035149 0.034864 1 1

TrustOre
(2nd input) 0.035149 0.034864 1 1

Table 5: Memory read and write count comparison of nbench (Num

sort) between native SGX and TrustOre

Read
Count

Write
Count

Total
Count

Native SGX (1st input) 616,106 212,446 828,552
Native SGX (2nd input) 616,564 212,626 829,190
TrustOre (1st input) 1,697,664 1,697,664 3,395,328
TrustOre (2nd input) 1,698,940 1,698,940 3,397,880

never changes at runtime. In the same way, all responses have a
consistent format and size and are encrypted. Finally, all MMIO or
DMA regions are established during initialization and remain con-
sistent throughout the program’s execution. Therefore, an attacker
can only figure out the number and time of requests/responses
which are not the protection scope of TrustOre.
FPGA Device Driver. The device driver is responsible for the
setup of the MMIO/DMA channel between an application and the
FPGA device. We conceive that the untrusted device driver can
act maliciously in the following ways: (a) Choose not to setup
MMIO/DMA regions, (b) Stop handling device and CPU interrupts,
or (c) Modify messages as they are being transmitted. Amongst the
following, (a) and (b) are denial-of-service violations which are out
of the scope of this paper. Furthermore, (c) will easily be caught by
TrustLib and TrustMod since all messages are encrypted with a
shared secret key unknown to the attacker. Therefore, TrustOre
is secure from tampering by the FPGA device driver.

Appendix C MEMORY ACCESS PATTERN

ANALYSIS

We provide the results of our empirical study on how TrustOre
protects memory access patterns. To present the realistic compar-
ison, we chose one of the nbench program, Num sort. Num sort
performs the heap sort algorithm for the given data array. We run
Num sort on the different two input data sets which are gener-
ated from the different random seed. To compare memory traces
between the native SGX and TrustOre, we capture all the write
and read accesses for the data array stored in the enclave. We also
gather the traces of TrustLib including the mapped MMIO region
to communicate with the FPGA.

Figure 9 shows the comparison of the captured memory traces
between the tests. Using the accumulated data, we calculate the
Pearson correlation value (Table 4) between each test to quantify
how similar (close to 1) and different (close to 0) the traces are.
As shown in Figure 9a and Figure 9b, a particular trace pattern is
observed in the memory trace gathered from the program running
in the native SGX. Furthermore, the traces between when inputting
the different data is distinguishable, given that the Pearson corre-
lation value is 0.383801 calculated in Table 4. The change in trace
pattern according to the input data is likely to result in the leak-
age of data information (e.g., ordering) by differential attack. On



ReqT ReqG

OP_TYPE

Indicating the requested operation type
0x0: write request
0x1: read request
0x2: allocation request
0x3: deallocation request

ID
Indicating the ID of the data that is targeted of the request
(supporting range: 0~1023)

[12:26] [12:64] SIZE

Indicating the requested data size in bytes (= N )

26-bit for the option ReqT (up to 64MB)

64-bit for the option ReqG (up to 264 bytes)

[38:26] [76:64] OFFSET
Indicating the byte offset within the object to write or read

26-bit for the option ReqT, 64-bit for the option ReqG

- [140:4] - For byte-wise alignment for data

[64:8N ] [144:8N ] DATA_TO_WRITE
Data to write
If OP_TYPE is not write request, dummies are filled.
N  here means the byte size of data, SIZE

STATUS
Indicating the status of the request
0x0: request success
0x1: request fail

ID
Indicating the allocated ID of the data
(supporting range: 0~1023)

- For byte-wise alignment for data

DATA_TO_READ
Read data
If OP_TYPE was not read request, dummies are filled.
N  here means the byte size of data that is received via SIZE

[1:10]

Direction

Enclave to
FPGA

Bit position [start:size]

FPGA to
Enclave

[16:8N ]

[11:5]

Field name Description

[0:2]

[2:10]

[0]

Figure 8: The data format of transaction packet between TrustLib and TrustMod.

(a) Native SGX (1st input) (b) Native SGX (2nd input) (c) TrustOre (1st input) (d) TrustOre (2nd input)

Figure 9: Memory Access Pattern Comparison for nbench (Num sort)

the other hand, the memory trace shown in the TrustOre-based
program (Figure 9c and Figure 9d) is constant during executing
the heap sort function. TrustOre-based program shows the same
trace even if the input data is changed as shown in Table 4. The
only non-constant trace pattern that an attacker can observe are
what is observed at the beginning and end of the program but it
leaks no meaningful information to the attacker. The ascending
trace patterns at the beginning and end are for moving data array
from the enclave to the FPGA memory and vice versa, respectively.

We also count the number of write and read to show TrustOre
protects the access type, too. Recall, TrustLib executes the same

number of write and read at each request regardless of the actual
access type by inserting dummy write or read as explained in §4.3.
As a result, TrustOre-based program balances the total number of
write and read as shown in Table 5, while the native SGX shows the
unbalanced write/read ratio. More specifically, TrustLib executes
four memory accesses, i.e., two writes and two reads sequentially
at each write or read request for the data block. Therefore, total
memory access count of TrustOre is about four times larger than
that of the native SGX. The reason why TrustOre needs a little
more than the four times larger number is the additional memory
operations at the beginning and end as mentioned earlier.
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