
KARD: Lightweight Data Race Detection with Per-Thread Memory Protection
Extended Abstract

Adil Ahmad˚ Sangho Lee: Pedro Fonseca˚ Byoungyoung Lee;

˚Purdue University :Microsoft Research ;Seoul National University

1. Motivation
Data races are frequently responsible for hard-to-diagnose
concurrency bugs. A promising approach to detect data races
is to automatically monitor and analyze a program’s concurrent
behavior during execution. In particular, dynamic data race
detectors monitor each memory read and write access as well
as synchronization operations performed by each thread to
detect potentially conflicting and racing accesses. Dynamic
data race detectors have been successful at detecting many data
races in widely-used programs (e.g., Firefox and Chromium
web browsers [21]) with low or no false positives.

2. Limitations of the State of the Art
The state-of-the-art dynamic data race detector, ThreadSani-
tizer (TSan) [19], incurs a prohibitive performance overhead
(7ˆ) because it employs expensive compiler instrumentation
to monitor every memory access. Despite being one of the
most commonly used data race detectors, TSan is not effi-
cient enough for all development and testing settings and is
generally hardly employed by developers [12].

Although several schemes mitigate the performance over-
head of data race detection, they all have critical scope,
deployability, or automation limitations. First, sampling
schemes [5, 9, 20, 22] select a subset of instructions and ob-
jects to monitor, resulting in probabilistic guarantees. In prac-
tice, when sampling schemes are configured for low overhead,
they only detect a tiny fraction of data races. Second, other
schemes [14, 17, 23, 24] require substantial system software or
hardware changes, which hinders deployment. Lastly, some
schemes require significant, error-prone developer effort, e.g.,
almost 35 hours of manual annotation for a single applica-
tion [23], to selectively monitor memory objects.

3. Key Insights
Intel Memory Protection Keys (MPK), a new hardware fea-
ture available in commodity Xeon and Icelake CPUs [1, 15],
enables per-thread protection of a program’s memory. Impor-
tantly, using MPK, programs can change permissions for a
memory region with high efficiency (i.e., 23 cycles [18]).

Our key insight is that we can use per-thread memory protec-
tion to exclusively assign shared memory regions, during syn-
chronization operations (e.g., lock()), to a particular thread
and detect potential data races. Once a memory region is ex-
clusively assigned to a thread, any access from other threads
will result in an access violation, signaling a potential data
race bug.

This paper proposes KARD, a low-overhead dynamic
data race detector that leverages per-thread memory protec-
tion [3,6,10]. KARD detects data races caused by inconsistent
lock usage (§4.1), which occurs when a program concurrently
accesses the same shared object using different locks or only
some of the concurrent accesses are synchronized using a
common lock. We analyze real-world data races detected by
TSan and eventually fixed by developers, and confirm that
inconsistent lock usage constitutes 69% of them. In contrast
to existing schemes, KARD does not rely on expensive com-
piler instrumentation for every memory operation, random
sampling, changes of the system’s hardware or software, or
program annotations. We show that KARD can detect all data
races due to inconsistent lock usage with low false positive,
for our evaluated real-world applications, while incurring a
geometric mean performance overhead (using 4 threads) of
only 5.23%.

4. Main Artifacts
This paper contributes three main artifacts: (a) a key-enforced
data race detection algorithm that detects data races due to in-
consistent lock usage, (b) a dynamic data race detector, KARD,
that implements key-enforced access and addresses the limita-
tions of MPK, and (c) the implementation of KARD, an LLVM
instrumentation component and a runtime library, and its eval-
uation on micro-benchmarks and real-world applications.

Key-enforced data race detection algorithm. This paper
introduces a new algorithm, based on key-enforced access, to
detect data races caused by inconsistent lock usage (§5). With
key-enforced access, a thread that enters a lock-protected re-
gion (i.e., critical section) must acquire either (a) an exclusive
key to write to an object, provided no other thread has any key
to the object, or (b) a shared key to read from an object, pro-
vided no other thread has an exclusive key to the object. The
thread releases the acquired key(s) when it exits the critical
section. Thus, while a thread is holding the key to an object,
other threads’ conflicting accesses to the object are flagged as
potential data races.

KARD: Dynamic data race detector. KARD employs key-
enforced access and overcomes three main challenges to detect
data races given the limitations of commodity per-thread mem-
ory protection. First, KARD must identify shared objects that
are accessed within critical sections to protect such objects
during execution. Second, per-thread memory protection oper-
ates at the granularity of memory pages (typically 4 KiB), but
native memory allocation assigns multiple objects to the same



page. Third, current per-thread memory protection hardware
supports only 16 protection keys, which is too small for highly
multi-threaded programs.

To overcome these limitations, KARD implements three
techniques: automated shared object identification (§6.3), con-
solidated unique page allocation (§6.3), and effective key as-
signment (§6.4).

Automated shared object identification. KARD implements
a shared object tracking scheme to accurately, automatically,
and progressively identify objects accessed in critical sections.
In particular, KARD protects each newly created heap and
global object with a key that a thread, executing a critical
section, initially cannot acquire. Hence, the first access to a
protected object, in a critical section, causes an access viola-
tion that is caught and handled by KARD.

Consolidated unique page allocation. KARD’s custom
memory allocator assigns unique virtual pages to each heap
and global memory allocation, enabling individual protec-
tion of each object using MPK. Moreover, to minimize phys-
ical memory usage, the allocator maps several virtual pages
storing small-sized objects into the same physical page by
shifting their page-internal offsets, similarly to minipage or
page-aliasing techniques.

Effective key assignment. KARD carefully uses a limited
number of protection keys available in existing per-thread
protection mechanisms (e.g., 16 keys in MPK). Specifically,
KARD reuses a protection key that was acquired within a
critical section or is already held by a thread. When key
reuse is not possible, KARD assigns an unused protection
key, recycles a protection key that is not currently held by
any thread, or shares a protection key between threads, while
minimizing potential issues.

KARD employs various methods to automatically analyze
access violations and prune out those caused by non-racy
events during execution. For instance, it uses a new protection
interleaving scheme to obtain fine-grained access information
from conflicting threads to test if the violation is due to a data
race (§6.5).

Implementation and evaluation. We implement KARD (§7)
using (a) an LLVM compiler [11] pass to trap heap allocations
and synchronization calls and (b) a C++-based runtime library
that creates unique paged heap objects and assigns protections
to executing threads. KARD’s implementation consists of 2850
lines of code written in C/C++. Furthermore, we evaluate
KARD (§8) using the well-known PARSEC and SPLASH-
2x benchmarks [4], as well as four real-world applications:
NGINX [16], memcached [7], pigz [2], and Aget [8].

5. Key Results and Contribution
Our evaluation shows that KARD incurs a very low perfor-
mance overhead. The geometric mean performance overhead
of KARD, with 4 threads, is 7.42% for PARSEC and SPLASH-
2x benchmarks and 5.23% for the four real-world applications.

In comparison, the overhead of TSan for these workloads is
690.96% and 189.48%, respectively. We used a 4-thread con-
figuration because it is a standard testing configuration that
can reveal most data races [13]. However, even with 32-thread
configuration, which utilizes all hardware threads on our ma-
chine, 10 out of the 15 evaluated benchmarks showed less than
30% overhead, illustrating the scalability aspect of KARD.

Furthermore, we provide an extensive analysis of potential
false positives and negatives of KARD, as well as a detailed
effectiveness evaluation. In particular, KARD detected all five
data races caused by inconsistent lock usage in our evaluated
real-world applications and reported only one false positive.
Hence, KARD is a low-overhead yet effective data race detec-
tor, suitable in many development and testing settings.

The key contributions of this paper are:

• Key-enforced data race detection algorithm. We pro-
pose a new algorithm that requires threads to acquire keys
before accessing objects in critical sections and captures
data races due to conflicting access on such objects.

• KARD: Dynamic data race detector. KARD employs
our proposed algorithm, using Intel MPK, to detect data
races due to inconsistent lock usage. KARD does not require
developer aid, system changes, or sampling.

• Implementation and evaluation. We implement KARD,
demonstrate that it is effective at detecting data races, and
show that it is lightweight—geometric mean of performance
overhead is 7.42% for benchmarks and 5.23% for real-world
applications, under common testing scenarios.

6. Why ASPLOS?
KARD uses a recent architectural feature (i.e., per-thread mem-
ory protection) to efficiently tackle a hard and long-standing
programming language problem (i.e., data races in thread-
unsafe execution). Further, KARD overcomes the limitations
of current memory protection hardware by implementing soft-
ware techniques such as minipage and effective key assign-
ment. Therefore, we believe that KARD is well-suited to the
inter-disciplinary focus of ASPLOS.

7. Citation for Most Influential Paper Award
“This paper describes a major step towards lightweight de-
tection of data race bugs, a particularly challenging class of
bugs that plagued software in the early days of the multi-core
era. In contrast with prior techniques, KARD did not require
expensive compiler instrumentation for every memory access,
hardware changes, or developer effort. Instead, KARD was
the first practical system to use per-thread memory protection
hardware to automatically detect data races caused by incon-
sistent lock usage. Unlike prior techniques, KARD caused
minimal overhead on real-world applications. The lightweight
approach of KARD for a longstanding problem propelled the
adoption of data race detectors in testing settings and signifi-
cantly contributed to improve the reliability of programs.”

2



References
[1] https://openbenchmarking.org/system/
1909082-HV-ICELAKETE36/TW20190905/cpuinfo.

[2] Mark Adler. pigz - Parallel gzip. https://zlib.net/pigz/.
[3] ARM Developer. ARM922T Technical Reference Manual: Domain

access control. https://developer.arm.com/docs/ddi0184/
latest/memory-management-unit/domain-access-control.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2008.

[5] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley.
Pacer: Proportional Detection of Data Races. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Toronto, ON, June 2010.

[6] Jonathan Corbet. Memory protection keys, 2015. https://lwn.net/
Articles/643797/.

[7] Dormando. memcached - a distributed memory object caching system.
https://memcached.org.

[8] EnderUNIX Software Development Team. EnderUNIX Aget: Mul-
tithreaded HTTP Download Accelerator. http://www.enderunix.
org/aget/.

[9] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective Data-Race Detection for the Kernel. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, October 2010.

[10] IBM. Storage protect keys. https://www.ibm.com/support/
knowledgecenter/en/ssw_aix_72/com.ibm.aix.genprogc/
storage_protect_keys.htm.

[11] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO), 2004.

[12] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. Efficient scalable thread-safety-violation detection: Finding
thousands of concurrency bugs during testing. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP), 2019.

[13] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: a comprehensive study on real world concurrency
bug characteristics. In Proceedings of the 13th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Seattle, WA, March 2008.

[14] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-
J. Boehm. Conflict Exceptions: Simplifying Concurrent Language
Semantics with Precise Hardware Exceptions for Data-Races. In Pro-
ceedings of the 37th ACM/IEEE International Symposium on Computer
Architecture (ISCA), San Jose, California, USA, June 2010.

[15] David Mulnix. Intel Xeon Processor Scalable Family Technical
Overview. https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview.

[16] NGINX Inc. NGINX High Performance Load Balancer, Web Server,
& Reverse Proxy. https://www.nginx.com.

[17] Marek Olszewski, Qin Zhao, David Koh, Jason Ansel, and Saman
Amarasinghe. Aikido: Accelerating Shared Data Dynamic Analyses.
In Proceedings of the 17th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), London, UK, March 2012.

[18] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo
Kim. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), June 2019.

[19] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data
race detection in practice. In Proceedings of the Workshop on Binary
Instrumentation and Applications (WBIA), 2009.

[20] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt,
Wenguang Chen, and Weimin Zheng. RACEZ: A Lightweight and
Non-Invasive Race Detection Tool for Production Applications. In Pro-
ceedings of the 33th International Conference on Software Engineering
(ICSE), Honolulu, HI, May 2007.

[21] Dmitry Vyukov. Threadsanitizerfoundbugs. https://github.com/
google/sanitizers/wiki/ThreadSanitizerFoundBugs.

[22] Tong Zhang, Dongyoon Lee, and Changhee Jung. ProRace: Practi-
cal Data Race Detection for Production Use. In Proceedings of the
22nd ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Xi’an, China,
April 2017.

[23] Diyu Zhou and Yuval Tamir. PUSh: Data Race Detection Based
on Hardware-Supported Prevention of Unintended Sharing. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Columbus, OH, October 2019.

[24] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In Proceedings of the
15th IEEE Symposium on High Performance Computer Architecture
(HPCA), Raleigh, NC, USA, February 2009.

3

https://openbenchmarking.org/system/1909082-HV-ICELAKETE36/TW20190905/cpuinfo
https://openbenchmarking.org/system/1909082-HV-ICELAKETE36/TW20190905/cpuinfo
https://zlib.net/pigz/
https://developer.arm.com/docs/ddi0184/latest/memory-management-unit/domain-access-control
https://developer.arm.com/docs/ddi0184/latest/memory-management-unit/domain-access-control
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://memcached.org
http://www.enderunix.org/aget/
http://www.enderunix.org/aget/
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.genprogc/storage_protect_keys.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.genprogc/storage_protect_keys.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.genprogc/storage_protect_keys.htm
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://www.nginx.com
https://github.com/google/sanitizers/wiki/ThreadSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/ThreadSanitizerFoundBugs

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contribution
	Why ASPLOS?
	Citation for Most Influential Paper Award

